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Abstract. The high-resolution screen of edge devices stimulates a
strong demand for efficient image super-resolution (SR). An emerging
research, SR-LUT, responds to this demand by marrying the look-up ta-
ble (LUT) with learning-based SR methods. However, the size of a single
LUT grows exponentially with the increase of its indexing capacity. Con-
sequently, the receptive field of a single LUT is restricted, resulting in
inferior performance. To address this issue, we extend SR-LUT by en-
abling the cooperation of Multiple LUTs, termed MuLUT. Firstly, we
devise two novel complementary indexing patterns and construct multi-
ple LUTs in parallel. Secondly, we propose a re-indexing mechanism to
enable the hierarchical indexing between multiple LUTs. In these two
ways, the total size of MuLUT is linear to its indexing capacity, yield-
ing a practical method to obtain superior performance. We examine the
advantage of MuLUT on five SR benchmarks. MuLUT achieves a signif-
icant improvement over SR-LUT, up to 1.1dB PSNR, while preserving
its efficiency. Moreover, we extend MuLUT to address demosaicing of
Bayer-patterned images, surpassing SR-LUT on two benchmarks by a
large margin.
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1 Introduction

Single-image super-resolution (SR) aims to restore a high-resolution (HR) image
with high-frequency details from its low-resolution (LR) observation. Recent
methods based on deep neural network (DNN) [10,26,11,34,69,68,53] have made
impressive progress in restoration performance, yet usually at a cost of heavy
computational burden. Although this can be alleviated by elaborated model
designs or dedicated computing engines (e.g., GPU and NPU), the hardware
cost and power consumption still limit the deployment of existing SR methods
on edge devices. Therefore, the growing number of high-resolution screens on
edge devices (e.g., smartphones and televisions) calls for a practical SR solution.

⋆ Equal contribution.
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An emerging research, SR-LUT [23], responds to this demand by replacing
the expensive computing with relatively cheap memory access of cached index-
value pairs. Different from the existing lightweight SR methods based on dedi-
cated computing engines [11,2,31], SR-LUT utilizes a single look-up table (LUT)
to cache the exhaustive values for later retrieval, which are computed in advance
by a learned SR network. This contributes to the power efficiency and inference
speed. However, in practice, the size of LUT is limited by the on-device mem-
ory. For a single LUT, the size grows exponentially as the dimension of indexing
entries (i.e., indexing capacity) increases. This imposes a restriction on the in-
dexing capacity as well as the corresponding receptive field (RF) size of the SR
network to be cached, which is the main obstacle for performance improvement.

In this paper, we embrace the merits of SR-LUT and propose MuLUT to
overcome its intrinsic limitation, by enabling the cooperation of Multiple LUTs.
Firstly, we devise two novel complementary indexing patterns and cooperate
multiple LUTs in parallel. Correspondingly, we propose a multi-branch network
structure to learn and generate SR results for caching. Secondly, we devise a
cascaded framework to enable the hierarchical indexing between multiple LUTs,
where a re-indexing mechanism is proposed to link between LUTs from different
hierarchies. In the above two ways, the total size of MuLUT is linear to its
indexing capacity, yielding a practical method to obtain superior performance.

Extensive experiments demonstrate a clear advantage of our proposed Mu-
LUT compared with SR-LUT. On five standard SR benchmarks, MuLUT
achieves up to 1.1dB PSNR improvement, approaching the performance of the
lightweight FSRCNN model [11]. Meanwhile, MuLUT preserves the efficiency of
SR-LUT, for example, the theoretical energy cost is about 100 times less than
that of FSRCNN.

Moreover, to evaluate the versatility of MuLUT, we extend MuLUT to ad-
dress demosaicing of Bayer-patterned images. Although SR-LUT can be directly
applied to demosaicing, it yields inferior performance due to the subpixel shift
between Bayer-patterned and HR images. Instead, we cooperate multiple LUTs
with complementary indexing and hierarchical indexing, addressing this mis-
alignment problem of the single LUT solution. As a result, MuLUT achieves over
6.0dB PSNR gain compared with SR-LUT on two widely-used benchmarks.

The contributions of this work are summarized as follows:

1) We devise two novel indexing patterns and a corresponding multi-branch
network to enable the complementary indexing of multiple LUTs.

2) We devise a cascaded framework with a re-indexing mechanism to enable
the hierarchical indexing of multiple LUTs.

3) Extensive experiments on SR demonstrate that MuLUT achieves a sig-
nificant improvement in performance over SR-LUT while preserving the clear
advantage in efficiency over DNNs, showing its practicality for edge devices.

4) We adapt MuLUT to the image demosaicing task and demonstrate its
superiority over SR-LUT, showing the versatility of the proposed method.
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2 Related Works

Classical SR methods. Interpolation-based methods, including nearest, bi-
linear, and bicubic [25], often produce blurry results because the interpolation
weights are calculated without considering the local structure inside the im-
age. Examplar-based methods leverage a dataset of LR-HR image patch pairs
[13,14,43,59,60], or exploit self-similarity inside the LR image [16,62]. Sparse cod-
ing methods learn a compact representation of the patches, showing promising
results [63,64,50,51,44]. But, computing the sparse representation of the input
patch is time-consuming. Other fast SR methods based on random forests [45],
gradient filed sharpening [49], and displacement field [52] are also explored. Nev-
ertheless, these classical SR methods suffer either unsatisfying visual quality or
time-consuming computations.
Efficient SR networks. With the rise of DNN methods, the community has
made impressive progress in the task of SR [10,26,34,2,68,53,6,65,57,56,8,61,41].
However, it comes with a substantial computational burden of numerous floating-
point operations. Thus, many efforts for efficient SR are conducted. Researchers
elaborately design lightweight networks, including ESPCN [46], FSRCNN [11],
CARN-M [2], IMDN [21], and LatticeNet [36], to name a few. General net-
work compression methods like quantization [31,58], neural architecture search
[9,48,30], network pruning [33], and AdderNet [7,47] have also been explored for
efficient SR. Most recently, Jo et al. propose SR-LUT for practical SR [23]. They
train a deep SR network with a restricted RF and then cache the output values
of the learned SR network to the LUT, which are retrieved to obtain HR predic-
tions at the test time. However, a single LUT yields inferior performance due to
the restriction of the dimension of indexing entries, i.e., the RF of the learned
SR network. This is proved to be critical for SR [17]. Our method overcomes the
intrinsic limitation of SR-LUT by enabling the cooperation of multiple LUTs.
Image demosaicing. Image demosaicing aims to produce colored observation
from linear responses of light sensors inside the camera. It can be viewed as an
SR problem with a particular color pattern. Interpolation-based methods like
nearest and bilinear can also be used in image demosaicing. However, they tend
to produce artifacts in the region with high-frequency signal changes. Classi-
cal methods taking advantage of the self-similarity inside the image [3,67,12,5]
or relying on an optimization process [66,18,22] are proposed. Recently, DNN
methods have been introduced to take advantage of powerful representations
learned from large-scale datasets [54,15,29]. However, dedicated computing en-
gines are required to execute numerous floating-point operations in DNNs. We
adapt MuLUT to the image demosaicing task and show its versatility.

3 Cooperation of Multiple LUTs for SR

3.1 Preliminary

LUT is a widely-used mapping operator, especially for color manipulation and
tone mapping modules in the image processing pipeline [40,37,27]. A LUT is
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Fig. 1: (a) SR-LUT is obtained by caching the output values of a learned deep SR net-
work with a restricted RF. At inference time, the precomputed HR output values are
retrieved from the LUT for query LR input pixels. The indexing entries and correspond-
ing HR values of a 4D LUT for 2× SR are marked in blue and green , respectively.
The actual receptive area with the rotation ensemble trick are depicted with dashed
lines. Please refer to the supplementary material and SR-LUT [23] for more details.
(b) By cooperating multiple LUTs, we increase the RF from 3 × 3 to 9 × 9, resulting
in a significant performance improvement over SR-LUT while preserving its efficiency.
The PSNR values are evaluated on Manga109 for 4× SR.

composed of pairs of indexes and values, which play as lookup indexing entries
and interpolation candidates at the inference time, respectively. These paired
indexing entries and values can be stored in the on-device memory, resulting in
high execution efficiency. Recently, Jo et al. proposed SR-LUT, adopting LUT to
the SR task. As illustrated in Fig. 1a, they firstly train a deep SR network. Then,
the output values of the trained SR network are cached into a LUT via traversing
all possible inputs. Finally, the HR predictions are obtained by locating LR input
pixels and interpolating cached HR values. Due to the exponential growth of
LUT size as the dimension of indexing entry increases, the authors impose a
restriction on the indexing capacity of LUT, resulting in the limited RF of the
SR network to be cached. Although with the rotation ensemble trick, where the
input patch is rotated 4 times and the lookup results are ensembled, the RF size
of SR-LUT is still limited to 3×3. This limitation leads to inferior performance,
since the RF size plays a critical role [17]. As shown in Fig. 1b, with increased
RF size, the performance for SR can be significantly improved.

3.2 Overview

From the above observation, we propose to increase the indexing capacity by co-
operating multiple LUTs, thus addressing the limitation of the RF. Specifically,
as illustrated in Fig. 2, we propose two fundamental ways, i.e., complementary
indexing and hierarchical indexing, to generalize a single LUT to MuLUT, whose
RF can be effectively enlarged by constructing multiple elementary components
just like a neural network. To obtain multiple LUTs, we train a MuLUT network,
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Fig. 2: Overview of MuLUT. Compared with a single LUT, MuLUT is able to greatly
increase the RF size (e.g., from 3× 3 to 9× 9). The MuLUT blocks are trained end-to-
end and then cached to multiple LUTs. At inference time, these parallel and cascaded
LUTs are retrieved with complementary indexing and hierarchical indexing in exactly
the same order as the MuLUT blocks.

composed of multiple elementary MuLUT blocks. By parallelizing and cascading
these MuLUT blocks, the RF and modeling capacity of the MuLUT networks
increase, while the total size of cached LUTs grows linearly instead of exponen-
tially. As shown in Fig. 2, the MuLUT network with 3 parallel blocks and 2
cascaded stages increases the RF size from 3× 3 to 9× 9 (9 times larger), while
the total size of these LUTs is less than 4 times a single LUT. In contrast, the
full size of a 25D LUT with an equivalent 9× 9 RF size is (28)25−4 = 2168 times
a 4D LUT. In this way, MuLUT equips with a much larger indexing capacity
without introducing the enormous cost of storage and computation.

During training, the MuLUT network is trained in an end-to-end manner.
After caching the trained MuLUT network, MuLUT shares exactly the same
structure of the original SR network and can be retrieved through complemen-
tary indexing and hierarchical indexing. In these two principled ways, we extend
SR-LUT both in the width and depth dimensions and empower it to cache more
complicated neural networks, taking advantage of both elaborate designs of deep
neural networks and the high efficiency of LUT retrieval.

3.3 Parallelizing LUTs with Complementary Indexing

The first way we propose to increase the indexing capacity is parallelizing LUTs
with complementary indexing. In SR, the surrounding pixels provide critical
information to restore the high-frequency details, making it essential to cover
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Fig. 3: Complementary indexing of multiple LUTs. With the proposed two novel in-
dexing patterns, MuLUT covers more pixels than different variants of SR-LUT. The
covered pixels with the rotation ensemble trick are marked with dashed boxes.

as many as input pixels for SR methods. Thus, we construct multiple LUTs
with different indexing patterns in parallel, which are carefully designed to com-
plement each other. For 4D LUTs, besides the standard indexing pattern, i.e.,
MuLUT-S, we devise two novel indexing patterns (MuLUT-D and MuLUT-Y)
with complementary covered pixels. As shown in Fig. 3a, the indexing pixels
of MuLUT-S, MuLUT-D, and MuLUT-Y are (I0, I1, I3, I4), (I0, I2, I6, I8), and
(I0, I4, I5, I7), respectively. Different from the variants of SR-LUT, our comple-
mentary design covers the whole 5 × 5 area with the three types of MuLUT
working together. Correspondingly, we propose a MuLUT network with multi-
ple branches, where the parallel MuLUT blocks with complementary receptive
areas are jointly trained. The cached LUTs, i.e., LUTS , LUTD, and LUTY , are
retrieved in parallel, after which their predictions are averaged. Thus, for anchor
I0, the corresponding HR values V are obtained by

V = (LUTS [I0][I1][I3][I4] +LUTD[I0][I2][I6][I8] +LUTY [(I0][I4][I5][I7])/3, (1)

where LUT∗[·] denotes the lookup and interpolation process in the LUT retrieval.
In practice, the MuLUT-S block and MuLUT-D block can be implemented with
standard convolutions, where the MuLUT-D block equips with an entry convo-
lution with a dilation size of 2. As for MuLUT-Y, we implement it through the
process illustrated in Fig. 3b. Precisely, we first unfold the input image by ex-
tracting 3×3 patches with a sliding window. Then, we sample and reshape these
“Y” shape pixels into 1 × 4 vectors, which are fed into a standard convolution
with a 1×4 kernel. In summary, with complementary indexing of parallel LUTs,
more surrounding pixels are involved to better capture the local structures, which
help to predict the corresponding high-resolution observations.

3.4 Cascading LUTs with Hierarchical Indexing

The second way we propose to increase the indexing capacity is cascading LUTs
with hierarchical indexing. As illustrated in Fig. 4 (left), with cascaded LUTs,
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Fig. 4: Hierarchical indexing and LUT re-indexing mechanism. With LUT re-indexing,
the behavior of LUT retrieval is involved in the learning process of the network with
cascaded stages. Thus, the cascaded LUTs are able to reproduce its performance.

we conduct the lookup process in a hierarchical manner. The values (I
(2)
∗ ) in

the previous LUT serve as the indexes of the following LUT. This hierarchical
indexing process can be formulated as

V = LUT (2)[LUT (1)[I∗]][LUT (1)[I∗]][LUT (1)[I∗]][LUT (1)[I∗]]. (2)

From the perspective of the RF, this cascaded framework is very similar to
cascading multiple convolutional layers in a neural network. As shown in Fig. 4
(right), cascading two stages of MuLUT blocks increases the RF size from 3× 3
to 4 × 4. However, the indexes for image data are sampled and stored in the
int8 data type because of the constraint of LUT size, while training neural
networks requires gradients in the float data type. Thus, we design a LUT re-
indexing mechanism to integrate the behavior of hierarchical indexing in the
learning process of MuLUT networks. Specifically, as shown in Fig. 4 (right),
the prediction values of the previous MuLUT block are quantized to integers
in the forward pass while their gradients are retained as floating-point values
in the backward pass. This way, the cascaded LUTs are able to reproduce the
performance of the cascaded MuLUT blocks. In practice, we adopt the dense
connection [19] to help the convergence of MuLUT networks.

3.5 The LUT-aware Finetuning Strategy

In SR-LUT [23], due to the constraint of storage, the indexes of a LUT are
uniformly sampled to reduce the LUT size, and the nonsampled indexes are
approximated with nearest neighbors. Also, an interpolation process is performed
to compute final predictions from weighted LUT values during LUT retrieval.
The aforementioned loss of information causes a performance gap between the
SR network and the cached LUT (See Table 4). Thus, we propose a LUT-aware
finetuning strategy to address this issue. Specifically, we treat the values stored
inside LUTs as trainable parameters and finetune them in a similar process to
LUT re-indexing. After finetuning, the values inside LUTs are adapted to the
sampling and interpolation process. This strategy is universal and serves as a
practical improvement for MuLUT.
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Fig. 5: The MuLUT network and SR-LUT baselines for image demosaicing. The co-
operation of multiple LUTs enables the flexible design of the processing pipeline.

4 Extension of MuLUT to Demosaicing

MuLUT enables the flexible design of the processing pipeline for different vi-
sion tasks. Here, we take demosaicing Bayer-patterned images as an example.
Image demosaicing can be viewed as an SR problem with a particular color
pattern. However, there are grave obstacles in adopting SR-LUT to this task.
Two straightforward solutions are shown in Fig. 5a and Fig. 5b, respectively.
In Baseline-A, the pixels in the bayer pattern are treated as four independent
channels, which are processed separately, and then the two green channels are
averaged. As shown in Fig. 5a, this solution suffers from a subpixel shift of center
points due to the misalignment between the HR pixels and the Bayer-patterned
sampled ones. In Baseline-B, at a stride of 2, the 2×2 Bayer-patterned blocks are
upsampled into colored patches directly. But the limited RF of SR-LUT leads
to the independent processing of these bayer blocks, thus failing to capture the
inter-block patterns. In contrast, MuLUT is easy to be adapted to the charac-
teristics of Bayer-patterned images. As shown in Fig. 5c, our MuLUT network
resembles three color channels like Baseline-B in the first stage, and then inte-
grates the surrounding pixels with three indexing patterns in the second stage.
This multi-stage and multi-branch structure enabled by the cooperation of mul-
tiple LUTs addresses the above obstacles of adapting LUT to the task of image
demosaicing effectively, showing the versatility of MuLUT.

5 Experiments and Results

5.1 Experimental Settings

Datasets. We train the MuLUT networks on the DIV2K dataset [1], which is
widely used in the task of SR. The DIV2K dataset contains 800 training im-
ages and 100 validation images with 2K resolution. It covers multiple scenes and
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PSNR/SSIM Method RF Size Set5 Set14 BSDS100 Urban100 Manga109

Interpolation
Nearest 1× 1 26.25/0.7372 24.65/0.6529 25.03/0.6293 22.17/0.6154 23.45/0.7414
Bilinear 2× 2 27.55/0.7884 25.42/0.6792 25.54/0.6460 22.69/0.6346 24.21/0.7666
Bicubic 4× 4 28.42/0.8101 26.00/0.7023 25.96/0.6672 23.14/0.6574 24.91/0.7871

LUT

SR-LUT-S [23] 3× 3 29.82/0.8478 27.01/0.7355 26.53/0.6953 24.02/0.6990 26.80/0.8380
MuLUT-SDY 5× 5 30.40/0.8600 27.48/0.7507 26.79/0.7088 24.31/0.7137 27.52/0.8551
MuLUT-SDY-X2 9× 9 30.60/0.8653 27.60/0.7541 26.86/0.7110 24.46/0.7194 27.90/0.8633

Sparse coding

NE + LLE [4] - 29.62/0.8404 26.82/0.7346 26.49/0.6970 23.84/0.6942 26.10/0.8195
Zeyde et al. [64] - 26.69/0.8429 26.90/0.7354 26.53/0.6968 23.90/0.6962 26.24/0.8241
ANR [50] - 29.70/0.8422 26.86/0.7368 26.52/0.6992 23.89/0.6964 26.18/0.8214
A+ [51] - 30.27/0.8602 27.30/0.7498 26.73/0.7088 24.33/0.7189 26.91/0.8480

DNN
FSRCNN [11] 17× 17 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
CARN-M [2] 45× 45 31.82/0.8898 28.29/0.7747 27.42/0.7305 25.62/0.7694 29.85/0.8993
RRDB [53] 703× 703 32.68/0.8999 28.88/0.7891 27.82/0.7444 27.02/0.8146 31.57/0.9185

Table 1: The comparison with other methods for 4× SR on standard benchmark
datasets. With increased RF size, MuLUT achieves a significant improvement in
restoration performance over SR-LUT.

encapsulates diverse patches. We evaluate our method with 5 well-recognized
benchmark datasets: Set5, Set14, BSDS100 [38], Urban100 [20], and Manga109
[39]. For quantitative evaluation, we report peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) [55], which are widely used for image
quality assessment in terms of restoration fidelity. Besides, we compute the the-
oretical energy cost following AdderSR [47] to evaluate the efficiency tradeoff of
our method as well as other solutions.

Comparison methods. We compare our method with various single-image
SR methods, including interpolation-based methods (nearest neighbor, bilinear,
and bicubic interpolation), sparse coding methods (NE + LLE [4], Zeyde et al.
[64], ANR [50], and A+ [51]), SR-LUT [23], and DNN methods (FSRCNN [11],
CARN-M [2], and RRDB [53]). Besides, to evaluate the efficiency of our method,
we also compare the computation cost with the AdderNet [47] version and the
quantized versions of VDSR [26] and CARN [2].

Implementation details. We train MuLUT networks with the Adam op-
timizer [28] in the cosine annealing schedule [35]. We use the mean-squared
error (MSE) loss function as the optimization target. The MuLUT networks
are trained for 2 × 105 iterations at a batch size of 32. The cached LUTs are
uniformly sampled with the interval 24, i.e., from LUT[256][256][256][256] to
LUT[17][17][17][17]. After locating coordinates, the final prediction is obtained
with 4D simplex interpolation [23], a 4D equivalent of 3D tetrahedral interpola-
tion [24]. We further finetune the cached LUTs on the same training dataset for
2000 iterations with the proposed LUT-aware finetuning strategy.

5.2 Quantitative Evaluation

Restoration performance. The quantitative comparisons with other methods
are listed in Table 1. The PSNR and SSIM values are computed at the Y-channel
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int8
Add.

int8
Mul.

int32
Add.

int32
Mul.

float32
Add.

float32
Mul.

Energy
Cost(pJ)

Set14
PSNR

BSDS100
PSNR

Urban100
PSNR

Bilinear 7.4M 2.8M 29.8M 29.15 28.65 25.95
Bicubic 12.0M 10.1M 53.5M 30.23 29.53 26.86

SR-LUT-F [23] 13.6M 0.5M 11.8M 19.1M 61.0M 31.88 30.77 28.49
SR-LUT-S [23] 19.1M 0.5M 28.6M 22.8M 74.2M 31.73 30.64 28.50
MuLUT-SDY 56.9M 0.5M 118.0M 68.0M 224.3M 32.35 31.17 29.10
MuLUT-SDY-X2 80.6M 0.9M 109.4M 85.5M 278.5M 32.49 31.23 29.31

FSRCNN [11] 6.1G 6.1G 28.1G 32.69 31.49 29.87

A-VDSR-8bit [47] 1224.1G 1.1G 36.9G 32.85 31.66 30.07
A-VDSR [47] 1224.1G 1.1G 1105.6G 32.93 31.81 30.48
VDSR [26] 612.6G 612.6G 2817.9G 33.03 31.90 30.76

A-CARN-1/4 [47] 28.9G 0.1G 26.3G - - 30.21
CARN-1/4 [47] 14.5G 14.5G 66.5G - - 30.40
CARN-M [2] 91.2G 91.2G 419.5G 33.26 31.92 30.83

Table 2: The comparison of energy cost and performance for producing a 1280 ×
720 HD image through 2× SR. The statistics of operations not involved in a method
are leaved blank. A-VDSR denotes the AdderNet version of VDSR [26,47]. A-VDSR-
8bit denotes performing 8bit quantization for A-VDSR. Our method shows superior
performance (0.6∼0.8dB) over SR-LUT, and a clear energy cost advantage (about 100×
less) compared with DNN methods, even with their AdderNet and quantized versions.

in the YCbCr color space. As can be seen, MuLUT boosts the performance of
SR-LUT significantly. For example, with 2 cascaded stages and 3 parallel blocks,
MuLUT-SDY-X2 improves the PSNR performance of a single LUT up to 1.1dB
on the Manga109 dataset and exceeds FSRCNN in terms of SSIM. With only
complementary indexing, MuLUT-SDY increases the RF size from 3×3 to 5×5,
boosting the PSNR value by about 0.6dB on the Set5 dataset. Overall, MuLUT
obtains comparable or better performance compared with FSRCNN.

Computational analysis. Following the protocol in AdderSR [47], we esti-
mate the theoretical energy cost of MuLUT. We calculate the statistics of mul-
tiplications and additions in different data types needed by each method and
estimate their total energy cost. The detailed comparison is listed in Table 2. As
can be seen, our method shows superior performance compared with interpola-
tion methods and SR-LUT, while maintaining similar energy cost. For example,
MuLUT-SDY-X2 exceeds SR-LUT by 0.6∼0.8dB while maintaining comparable
energy cost. On the other hand, MuLUT maintains the clear energy cost advan-
tage over DNN methods, even with their AdderNet and quantized versions. Com-
pared with FSRCNN, A-VDSR-8-bit, and A-CARN-1/4, MuLUT costs about
100× less energy while achieving comparable restoration performance. In sum-
mary, MuLUT achieves a better performance and efficiency tradeoff, boosting
the performance of SR-LUT significantly with similar computation cost.

We also report the running times of different methods in Table 3. As listed,
MuLUT maintains the efficiency of SR-LUT, showing a clear advantage com-
pared to sparse coding methods and DNN methods. Note that the CPU comput-
ing architecture is not optimized for LUT, which can be embedded into on-device
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Interpolation LUT Sparse Coding* DNN

Nearest Bilinear Bicubic SR-LUT-S MuLUT-SDY MuLUT-SDY-X2 ANR A+ FSRCNN CARN-M RRDB

runtime(ms) 9 20 97 137 228 242 1715 1748 350 3300 23377
PSNR(dB) 23.45 24.21 24.91 26.80 27.52 27.90 26.18 26.91 27.91 29.85 31.57

Table 3: Runtime comparison for generating a 1280× 720 HD image through 4× SR.
* denotes that the runtimes of sparse coding methods are from SR-LUT [23], which
are tested on a desktop computer. All the other runtimes are measured on a Xiaomi 11
smartphone, among which the DNN methods are implemented in the CPU-version of
the PyTorch library [42]. For SR-LUT-S, we test the official implementation provided
by the authors. PSNR values are evaluated on Manga109.

memory such as those of image processors in consumer cameras for low-latency
execution. Moreover, MuLUT can be implemented without modern computing
libraries like PyTorch, thus having better practicality on edge devices.

5.3 Qualitative Evaluation

We compare the visual quality of our method (MuLUT-SDY-X2) with other
methods in Fig. 6. In the first two examples, SR-LUT-S produces notable arti-
facts, e.g., along the border of the hat (baby form Set5). Our method achieves
similar visual quality as computation-heavy methods like A+ and FSRCNN. In
the last two examples, our method is able to generate sharper edges and obtain
better visual quality than A+ and FSRCNN, e.g., the eyebrow of the character
(TetsuSan from Manga109). To sum up, MuLUT achieves better visual quality
than SR-LUT-S and comparable visual quality with A+ and FSRCNN. More
visual results are provided in the supplementary material.

5.4 Ablation Studies

We conduct several ablation experiments to verify the effectiveness of MuLUT.
The effectiveness of complementary indexing. We conduct an experi-

ment with combinations of different indexing patterns of parallel LUTs. As listed
in Table 4, with MuLUT-S and MuLUT-D working together, MuLUT-SD is able
to cover a region of 5 × 5, but not all pixels are covered. Still, it improves the
performance of SR-LUT. Further, involving the novel MuLUT-Y with a “Y”
shape indexing pattern, the MuLUT-SDY covers all pixels in a 5× 5 region and
improves the performance, showing the effectiveness of complementary indexing.

The effectiveness of hierarchical indexing. We conduct an experiment
with cascading different stages of LUTs. As listed in Table 4, cascading more
stages increases the RF size steadily, and the performance improves accordingly.
Without LUT re-indexing, the performance drops due to the inconsistency be-
tween the SR network and the cached LUT. Note that cascading LUTs involves
sub-linear extra computational burden and storage space, since all LUTs except
the ones in the last stage cache only one value for each index entry. Furthermore,
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baby
from Set5

GT Bicubic SR-LUT-S
(PSNR/SSIM) (31.73/0.8571) (32.51/0.8713)

A+ FSRCNN Ours
(33.24/0.8846) (33.30/0.8866) (33.29/0.8869)

241004
from BSDS100

GT Bicubic SR-LUT-S
(PSNR/SSIM) (30.82/0.8040) (31.27/0.8189)

A+ FSRCNN Ours
(31.71/0.8274) (31.74/0.8312) (31.68/0.8287)

img 067
from Urban100

GT Bicubic SR-LUT-S
(PSNR/SSIM) (16.92/0.7046) (17.97/0.7824)

A+ FSRCNN Ours
(17.67/0.7780) (18.18/0.7962) (18.45/0.8141)

TetsuSan
from Manga109

GT Bicubic SR-LUT-S
(PSNR/SSIM) (20.72/0.8336) (23.38/0.9045)

A+ FSRCNN Ours
(23.23/0.8997) (24.36/0.9118) (24.75/0.9251)

Fig. 6: Visual comparison for ×4 SR on standard benchmark datasets.
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PSNR(dB) Energy(pJ) LUT Size RF Size Set5 Set14 BSDS100 Urban100 Manga109

SR-LUT-S 72.5M 1.274MB 3× 3 29.82 27.01 26.53 24.02 26.80
MuLUT-SD 149.2M 2.549MB 5× 5 30.31 27.41 26.75 24.25 27.38
MuLUT-SDY 222.3M 3.823MB 5× 5 30.40 27.48 26.79 24.32 27.52

MuLUT-S-X2 w/o re-index 78.0M 1.354MB 4× 4 30.11 27.26 26.64 24.15 27.02
MuLUT-S-X2 78.0M 1.354MB 4× 4 30.23 27.39 26.70 24.28 27.39
MuLUT-S-X3 83.4M 1.434MB 5× 5 30.31 27.42 26.73 24.31 27.54
MuLUT-S-X4 88.9M 1.513MB 6× 6 30.40 27.47 26.76 24.36 27.66

SR-LUT-S net. - - 3× 3 29.88 27.14 26.57 24.04 26.86
SR-LUT-S (4bit LUT) w/o ft. 72.5M 1.274MB 3× 3 29.82 27.01 26.53 24.02 26.80
SR-LUT-S (4bit LUT) w/ ft. 72.5M 1.274MB 3× 3 29.94 27.18 26.59 24.09 26.94
SR-LUT-S (3bit LUT) w/o ft. 72.5M 102.5KB 3× 3 29.58 26.99 26.49 23.95 26.76
SR-LUT-S (3bit LUT) w/ ft. 72.5M 102.5KB 3× 3 29.87 27.13 26.56 24.04 26.85
MuLUT-SDY-X2 net. - - 9× 9 30.61 27.61 26.86 24.47 27.93
MuLUT-SDY-X2 w/o ft. 233.6M 4.062MB 9× 9 30.52 27.55 26.83 24.40 27.83
MuLUT-SDY-X2 233.6M 4.062MB 9× 9 30.60 27.60 26.86 24.46 27.90

Table 4: Ablation studies on MuLUT for 4× SR, where re-index denotes the LUT
re-indexing mechanism, net. denotes the performance of corresponding neural network,
4bit denotes the sampling interval is 24 and 3bit the 25, and ft. denotes the LUT-aware
finetuning strategy.

with both complementary indexing and hierarchical indexing, MuLUT-SDY-X2
achieves better restoration performance, showing their orthogonal improvement.

The effectiveness of LUT-aware finetuning. We compare SR-LUT and
MuLUT-SDY-X2 with or without the LUT-aware finetuning strategy. We also
report the corresponding network performance. As can be seen in Table 4, there
is a performance drop from network predictions to LUT results, especially for
the one with larger sampling intervals (3bit LUT). The proposed LUT-aware
finetuning strategy is able to fill this gap consistently for different sampling in-
tervals. Especially, after finetuning, a 3bit LUT achieves similar performance
compared with a 4bit LUT, while taking 10× less storage. Further, the pro-
posed MuLUT-SDY-X2 also benefits from the finetuning strategy, showing its
effectiveness and universality.

5.5 Results in Image Demosaicing

For the task of image demosaicing, we train baseline methods and MuLUT on
the synthetic data pairs from the DIV2K dataset [1], where the mosaiced images
are simulated by applying color masks on the original images. We compare our
method with bilinear interpolation, classical solutions (D-LMMSE [66], AHD
[18], and LSLCD [22]), and DNN (DemosaicNet [15]) on the widely-used Kodak
dataset [32] and McMaster dataset [67]. As illustrated in Fig. 7a and Fig. 7b,
MuLUT improves the performance of SR-LUT baselines by a large margin, e.g.,
over 6.0dB on the Kodak dataset, achieving a better performance and efficiency
tradeoff. Besides, as shown in Fig. 8, the results of Baseline-A are blurry, and
Baseline-B produces noticeable blocking artifacts due to limited RF, while Mu-
LUT obtains comparable visual quality with computation-heavy classical solu-
tions and DNN.
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Fig. 7: MuLUT achieves a better performance and efficiency tradeoff, compared with
interpolation, classical solutions, single-LUT baselines, and DNN methods. The cPSNR
values are average over 3 color channels. The runtimes of classical solutions are from
DemosaicNet [15], where they are tested on a desktop computer. The runtimes of other
methods are measured on a Xiaomi 11 smartphone.

21 from Kodak

Mosaiced Bilinear Baseline-A Baseline-B

GT D-LMMSE DemosaicNet Ours

Fig. 8: Visual comparison for image demosaicing on the Kodak dataset.

6 Conclusion Remarks

In this work, we propose MuLUT to generalize the SR-LUT by enabling the coop-
eration of multiple LUTs. Our method overcomes the limitation of the receptive
field of a single LUT, empowering LUTs to be constructed like a neural network.
Extensive experiments on both image super-resolution and image demosaicing
demonstrate that MuLUT achieves significant improvement in restoration per-
formance over SR-LUT while preserving its efficiency. Overall, the proposed
MuLUT shows its versatility to serve as a universal caching framework and an
efficient solution to avoid deploying heavy DNNs on edge devices.
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