Supplemental Material for "Adaptive Patch Exiting for Scalable Single Image Super-Resolution"

Shizun Wang¹*[•], Jiaming Liu^{2,4}*[•], Kaixin Chen¹[•], Xiaoqi Li^{2,4}[•], Ming Lu³[†][•], and Yandong Guo⁴[•]

¹ Beijing University of Posts and Telecommunications ² Peking University ³ Intel Labs China ⁴ OPPO Research Institute wangshizun@bupt.edu.cn, lu199192@gmail.com

1 Additional Experiments

1.1 Design of Regressor

Despite the one-layer MLP (1-MLP) we used in the paper, we also choose twolayer MLP (2-MLP) and Conv-GAP-MLP (C-MLP) as other designs for evaluation. We also make the regressor predict random values (Rand). We report the regressor accuracy (Top-5 means the predicted exit is in the [-2,2] range of ground-truth exit) and PSNR (by setting incremental capacity threshold to 0.1). As can be seen from Tab. 1, higher accuracy leads to higher PSNR. To our surprise, the PSNR of Rand is also acceptable despite its low accuracy. Although this experiment is very primary, we believe improving the accuracy of regressor is a promising future work.

1.2 Additional Quantitative Results

we provide additional results on Urban100 and B100 in Tab. 2 and Tab. 3. We also apply the proposed -APE strategy to RRDB and SwinIR as shown in Tab. 4. These additional results demonstrate the generalization ability of APE as the conclusion is consistent.

1.3 Visual results and analysis

Overfitting patches are illustrated in Fig. 1 (a) and show a consistent grid pattern. The actual reason will be an interesting future work for SR research. And we show one obvious visual result in Fig. 1 (b,c,d).

^{*}Equal Contribution

[†]Corresponding Author

Fig. 1: (a) Overfitting patches. (b) HR image. (c) EDSR/RCAN. (d) EDSR-APE/RCAN-APE. Best viewed by zooming in.

Table 1: Regressor accuray and PSNR of EDSR-APE on DIV2K.

Method	\mathbf{Scale}	Acc.(Top-5)	PSNR
1-MLP (paper)	$\times 4$	82%	28.66
2-MLP	$\times 4$	88%	28.66
C-MLP	$\times 4$	66%	28.3
Rand	$\times 4$	56%	28.1

Table 2: Performance evaluation on Urban100 and B100.

Method	Scale	U	Jrban100		B100		
		FLOPS	PSNR	SSIM	FLOPS	PSNR	SSIM
RCAN	$\times 4$	$36.77\mathrm{G}$	$25.32 \mathrm{dB}$	0.7375	$36.77 \mathrm{G}$	$27.31 \mathrm{dB}$	0.7036
RCAN-APE	$\times 4$	36.23G	$25.49 \mathrm{dB}$	0.7471	36.74G	$28.27 \mathrm{dB}$	0.7413
EDSR	$\times 4$	115.83G	$25.51 \mathrm{dB}$	0.7444	$115.83 \mathrm{G}$	$27.40 \mathrm{dB}$	0.7066
EDSR-APE	$\times 4$	115.59G	$25.63 \mathrm{dB}$	0.7516	$115.64 \mathrm{G}$	$28.35 \mathrm{dB}$	0.7437

Table 3: Efficiency evaluation on Urban100.

Method	Scale	Param.	PSNR	Body FLOPs	Total FLOPs	Time (ms)
RCAN	$\times 4$	$15.6 \mathrm{M}$	$25.32 \mathrm{dB}$	34.91G	36.77G (100%)	170
RCAN-APE	$\times 4$	$15.6 \mathrm{M}$	$25.31 \mathrm{dB}$	15.27G	17.13G (46%)	113
EDSR	$\times 4$	$43.1\mathrm{M}$	$25.51 \mathrm{dB}$	87.01G	115.83G (100%)	300
EDSR-APE	$\times 4$	$43.1\mathrm{M}$	$25.50\mathrm{dB}$	$59.02 \mathrm{G}$	90.84G (78%)	178

Table 4: Experiments on RRDB and SwinIR.

Method	Scale	Param.	PSNR	Body FLOPs	Total FLOPs	Time (ms)
RRDB	$\times 4$	14.5M	$28.26 \mathrm{dB}$	33.16G	36.39G (100%)	550
RRDB-APE	$\times 4$	14.5M	$28.21 \mathrm{dB}$	$13.51\mathrm{G}$	16.74G (46%)	418
SwinIR	$\times 4$	$11.9 \mathrm{M}$	$28.71 \mathrm{dB}$	27.47G	29.41G (100%)	2320
SwinIR-APE	$\times 4$	11.9M	$28.69 \mathrm{dB}$	$15.31\mathrm{G}$	17.25G(58%)	813