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Abstract. Since the future of computing is heterogeneous, scalability
is a crucial problem for single image super-resolution. Recent works try
to train one network, which can be deployed on platforms with differ-
ent capacities. However, they rely on the pixel-wise sparse convolution,
which is not hardware-friendly and achieves limited practical speedup.
As image can be divided into patches, which have various restoration
difficulties, we present a scalable method based on Adaptive Patch Ex-
iting (APE) to achieve more practical speedup. Specifically, we pro-
pose to train a regressor to predict the incremental capacity of each
layer for the patch. Once the incremental capacity is below the thresh-
old, the patch can exit at the specific layer. Our method can easily
adjust the trade-off between performance and efficiency by changing
the threshold of incremental capacity. Furthermore, we propose a novel
strategy to enable the network training of our method. We conduct ex-
tensive experiments across various backbones, datasets and scaling fac-
tors to demonstrate the advantages of our method. Code is available at
https://github.com/littlepure2333/APE.
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1 Introduction

Super-Resolution (SR) is an important technique and has been widely used in
video compression [8], rendering acceleration [20], network streaming [23], medi-
cal imaging [18], computational photography [19] and so on. As the development
of Deep Neural Networks (DNNs), plenty of DNN-based methods are proposed
for Single Image Super-Resolution (SISR) [16,4,14,28,9,13,27]. Existing methods
mostly cascade convolutional layers many times to construct deep networks and
adopt the pixel-shuffle layer [16] to obtain high-resolution output. The cascaded
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layers increase the network’s capacity of modeling contextual information over
larger image regions. Although significant improvements have been made in per-
formance or efficiency over the past few years, the trade-off between performance
and efficiency is still under-explored to the best of our knowledge.

Since there are various hardware platforms like CPUs, GPUs, FPGAs and
so on, training one scalable network that can be deployed on platforms with
different capacities is strongly demanded for future heterogeneous computing.
Recently, a pixel-wise adaptive inference method for scalable SISR has been
proposed [15]. It learns a predictor to generate the pixel-wise depth map that
indicates the target number of layers for each pixel. Sparse convolution guided
by the pixel-wise depth map is implemented to achieve speedup. The scalability
of [15] is realized by changing the mean average of layers for all pixels. However,
although [15] can obtain theoretical FLOPs reduction, the practical speedup is
limited since the pixel-wise sparse convolution is not hardware-friendly. Inspired
by the fact that image can be divided into patches, which have various restoration
difficulties, [10] proposes a general framework that applies appropriate networks
to different patches. A module is learned to classify the patches into various
restoration difficulties. They train several models with different capacities to
super-resolve patches with different difficulties. Although [10] can save up to 50%
FLOPS on benchmarking datasets, we observe it has two limitations. Firstly, it
applies one fixed network to a certain restoration difficulty, which cannot adjust
the trade-off between performance and efficiency as [15]. Secondly, it needs to
store one network for each restoration difficulty, heavily increasing the model
size.

To solve the above limitations, we present a scalable method based on Adap-
tive Patch Exiting (APE) for SISR. Our method can train one network to adap-
tively super-resolve patches with different difficulties. To be more specific, we
train a regressor to predict the incremental capacity of each layer for the input
patch. The incremental capacity can evaluate the necessity of each layer. Once
the incremental capacity is below a threshold, the patch can exit at the specific
layer. Our method can easily adjust the trade-off between performance and ef-
ficiency by changing the threshold of incremental capacity. On platforms with
high computational resources, our method can lower the threshold to utilize more
layers for super-resolution. On platforms with low computational resources, our
method can raise the threshold to make the patches exit earlier. Therefore, our
method is scalable over platforms with different computational resources. Com-
pared with [10], which classifies the patches into certain restoration difficulties,
our method enables the scalability by adjusting the threshold. In addition, our
method only needs to store one network for all restoration difficulties, signifi-
cantly reducing the model size.

In order to enable the network training, we further propose a strategy that
can jointly train the regressor and SR network. Our strategy first train the multi-
exit SR network based on the original network, then we calculate the target
incremental capacity of each layer based on the multi-exit SR network. Finally,
we jointly train the SR network and regressor to converge.
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Our contributions can be concluded as follows:

– We present a novel scalable method for SISR based on adaptive patch exiting,
which can be deployed on platforms with different capacities.

– We propose to learn the incremental capacity of each layer instead of patch
difficulty, enabling the patch to exit at the optimal layer.

– We introduce an effective joint training strategy to enable the training of
incremental capacity regressor and SR network.

– We conduct detailed experiments across various SR backbones and scal-
ing factors to demonstrate the advantages of our method over existing ap-
proaches.

2 Related Work

Single Image Super-Resolution Since the seminal work SRCNN [4], which
first applies DNN to SISR, many methods have been proposed. For example,
VDSR [9] adopts a very deep neural network to learn the image residual. EDSR
[14] analyzes the DNN layers and proposes to remove some redundant layers
from SRResNet [11]. RDN [29] uses dense connections that fully utilize the in-
formation of preceding layers. RCAN [28] explores the attention mechanism and
proposes attentive DNNs to boost the performance. In order to reduce the com-
putational cost, FSRCNN [5] and ESPCN [16] propose to use LR image as input
and upscale the feature map at the end of networks. LAPAR [12] presents a
method based on linearly-assembled pixel-adaptive regression network, which
learns the pixel-wise filter kernel. In addition to methods focusing on network
design, many works study the real-world SR problem. RealSR [3] builds a real-
world dataset with paired LR-HR images captured by adjusting the focal length.
They also present a Laplacian pyramid-based kernel prediction network to re-
cover the HR image. Zero-Shot SR [17] exploits the power of DNN without
relying on prior training. They train a small image-specific DNN at test time on
examples extracted from the input image itself. Recently, the community also
shows the trend of applying techniques like network pruning, quantization, dis-
tillation, AutoML to SR. BSRN [21] designs a bit-accumulation mechanism to
approximate the full-precision convolution with a value accumulation scheme.
Although plenty of DNN-based methods are proposed to improve the perfor-
mance or efficiency, the scalability problem is still under-explored to the best of
our knowledge.

Adaptive Inference Since the future of computing is heterogeneous, train-
ing one scalable network that can be deployed on platforms with different ca-
pacities is a very important problem. [26] proposes a simple method that trains
a single network executable at different widths, enabling instant and adaptive
performance-efficiency trade-off at runtime. [25] further extends the slimmable
networks [26] from a predefined widths set to arbitrary width, and generalizes
to networks both with and without batch normalization layers. [24] presents a
method that trains a single slimmable network to approximate the network per-
formance of different channel configurations, and then searches the optimized
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channel configurations under different resource constraints. Instead of switching
network width, [7] investigates the option that achieves instant and flexible de-
ployment by adaptive bit-widths of weights and activations in the model. [22]
trains a set of sub-networks with different widths using different input resolu-
tions to mutually learn multi-scale representations for each sub-network. The
performance-efficiency trade-off can be achieved by changing both the network
width and input resolution. [2] proposes to train a once-for-all network that
supports diverse platforms by decoupling training and search. They can quickly
get a specialized sub-network by selecting from the once-for-all network with-
out additional training. Although plenty of methods are proposed for adaptive
inference, they mainly focus on high-level vision tasks. The scalability prob-
lem of low-level vision tasks is still under-explored as far as we know. Inspired
by the fact that different image regions have different restoration difficulties,
[15] introduces a lightweight adapter module, which takes image features and
resource constraints as input and predicts a pixel-wise depth map. Therefore,
only a fraction of the layers in the backbone is performed at a given position
according to the predicted depth. While [15] can achieve theoretical FLOPS re-
duction, the practical speed gain is limited since unstructured sparse convolution
is not hardware friendly. [10] also utilizes the properties of different image regions
by dividing the images into local patches. They train a module to classify the
patches into different difficulties, and apply appropriate model to each difficulty.
Although [10] can obtain practical speed gains, it is not scalable under different
resource constraints.

3 Method

To apply Adaptive Patch Exiting (APE) to existing SR networks, we modify the
original SR networks to multi-exit networks and present the training strategy
in Sec. 3.1. We then analyze the performance of each patch at a certain layer,
and introduce the incremental capacity to evaluate the necessity of each layer
for a patch in Sec. 3.2. Finally, we jointly train the SR network and lightweight
regressor in Sec. 3.3. The regressor is used to estimate the incremental capacity
at a certain layer. The trained network can achieve the trade-off between per-
formance and efficiency by adjusting the threshold of incremental capacity. The
overall pipeline is illustrated in Fig. 1.

3.1 Training Multi-Exit SR Networks

Super-resolution aims to recover a High-Resolution (HR) image ŷ from a given
Low-Resolution (LR) image x. Since the pioneering work [4], most of the SR
networks consist of three parts: head, body and tail. The head part H extracts
the features f0 from the LR image:

f0 = H(x;Θh) (1)
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Fig. 1: The pipeline of Adaptive Patch Exiting (APE). Original SR networks take
a LR image as input, and forward it through head, body and tail to generate
the SR image. Instead, APE first splits the LR image into patches, which are
forwarded in parallel. The patches will exit early if the incremental capacity
estimated by the regressor is below a given threshold. Finally, the SR patches
are merged to the output image.

and the body part B enhances f0 by cascading N convolutional layers to
generate feature fN :

fN = B(f0;Θb) (2)

Finally, the tail part T takes the enhanced feature fN to obtain the SR output
ŷ:

ŷ = T (fN ;Θt) (3)

where Θh, Θb and Θt denote the parameters of head, body and tail individ-
ually. Typical SISR architectures such as EDSR [14], RCAN [28], VDSR [9] and
ECBSR [27] all follow this pipeline. We denote the original SR network as F :

ŷ = F (x;Θh, Θb, Θt) = T (B(H(x;Θh);Θb);Θt) (4)

Without any change to head and tail, we can simply modify the number
of repeated layers in the body to change the network capacity. We extract the
intermediate feature fi of the body, where i ∈ [1, N ], to generate the early-exit
output:
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ŷi = T (fi;Θt) (5)

The original SR network uses the last layer’s feature fN to generate the
output. As the intermediate features of body have the same resolution as last
layer’s feature, we construct the multi-exit SR network by exit early in the
intermediate layers. Different exits require different computational resources. We
initialize the multi-exit SR network with the pre-trained model, and all exits’
L1 losses are summed up as the multi-exit SR network’s reconstruction loss Lm:

Lm =

N∑
i=1

|ŷi − y| (6)

where y represents the HR image and N is the total number of layers. The
training details are identical to the setup described in Sec. 4.1.

3.2 Estimating Incremental Capacity

In order to make the multi-exit SR networks scalable, we need to design the
signal of early-exit at a certain layer. Therefore, we train a 32-exit EDSR on
DIV2K, and randomly sample 32 × 32 LR patches to observe their layer-wise
performances. The result is shown in Fig. 2a. A naive method of adaptive infer-
ence is to exit early when the performance is exceeding a threshold. However,
we observe that there are three types of patches. The first one is named as bot-
tleneck patches, which can achieve satisfying performance with a few layers as
shown in Fig. 2b. The second one is called growing patches, which need more
layers to achieve good performance as shown in Fig. 2c. The third one is called
over-fitting patches as shown in Fig. 2d, which might even achieve worse per-
formance with more layers. In addition, the intervals of these three types are
also quite different. The above observation shows that the signal of early-exit
should be released when the performance gets saturated, rather than when the
performance exceeding a threshold.

We define the early-exit signal Ii as the incremental capacity of ith layer,
which measures the performance difference between current layer and previous
layer:

Ii = σ(Pi − Pi−1) (7)

where σ is the tanh function, Pi is the reconstruction performance of ith

layer. As can be seen, the range of Ii is [−1, 1]. Higher incremental capacity
means more performance gain when forwarding ith layer. When Ii is close to
0, it means the performance get saturated. When Ii is below 0, it indicates the
performance will get worse. In this paper, we use the PSNR between SR image
and HR image as the reconstruction performance:

Pi = PSNR(ŷi, y) (8)
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(a) All Patches (b) Bottleneck Patches

(c) Growing Patches (d) Overfitting Patches

Fig. 2: Layer-wise PSNR performances of different patches. All patches are of size
32 × 32 and super-resolved by 32-exit EDSR at ×2 scaling factor. The layer-wise
performances of all sampled patches are reported in (a). There are three types
of patches according to our observation, which are called bottleneck patches,
growing patches, overfitting patches respectively as shown in (b), (c) and (d)

[10] proposes to train a module to classify the patches into different dif-
ficulties. However, as we have mentioned above, the relation between network
capacity and performance is not monotonic. There are some patches that achieve
worse results with more layers. Instead, using the incremental capacity can al-
ways correctly measure the saturation of performance and exit at the optimal
layer.

During inference, since we cannot get the accurate incremental capacity due
to the lack of HR image. Therefore, we propose to train a lightweight regressor
R, which takes the feature fi of each layer in the body as input, to estimate the
ith layer’s incremental capacity Îi. All the layers share the same regressor:

Îi = σ(W ∗ g(fi) + b) (9)

The regressor contains a fully-connected layer, where g is global average
pooling operation, W and b are the weight and bias of the fully-connected layer.
The loss function of the regressor is the L2 loss between Îi and ground-truth
incremental capacity Ii:
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Li = ∥Îi − Ii∥22 (10)

3.3 Jointly Training SR Network and Regressor

To apply APE to a SR network, we train its multi-exit SR network and the
regressor jointly. The overall loss consists of all layers’ reconstruction loss and
the incremental capacity regression loss:

L = Lm + λ

N∑
i=1

Li (11)

where λ is a hyper-parameter to balance these two losses, and we set it to 1 for
all our experiments. During inference, we split the input image into overlapped
patches, and feed all the patches into multi-exit SR network in parallel. Once
the incremental capacity of a patch is below a given threshold, the patch can
exit early. Increasing the threshold will make patches exit earlier and reduce the
computational cost. Finally, the HR patches are merged to obtain the output
image.

4 Experiments

4.1 Implementation Details

Training Setup We use DIV2K dataset [1] to train all the models. The low-
resolution images are generated by bicubic downsampling with scaling factors
×2, ×3 and ×4. Following former works, we use the first 800 images as the
training set and 10 images (0801-0810) as the validation set. During training,
data augmentation including random horizontal flip, random vertical flip and
90◦ rotation are applied. We train all the models for 300 epochs with learning
rate initialed as 1e-4 and decayed to half at 200 epochs. The batch size is 16 and
the HR patch size is 192. We use Adam optimizer, where β1 is set to 0.9 and β2

is set to 0.999.

Testing Setup We use DIV2K [1] dataset and DIV8K [6] dataset for test-
ing since the widely-used benchmark datasets are not suitable for large im-
age super-resolution evaluation. Specifically, we choose 100 images (0801-0900)
from DIV2K for high-definition (HD) scenario, and 100 images (1401-1500) from
DIV8K for ultra high-definition (UHD) scenario. During testing, we first split LR
images into patches of size 48 with stride 46 unless otherwise specified. Then the
LR patches are super-resolved in parallel, and the parallel size can be tuned to
fit the computational resource. Finally, the SR patches are merged to obtain the
complete SR images by weighting overlapping areas. The Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) calculated on RGB channels are
adopted as the evaluation metrics to measure super-resolution performance. We
use FLOPs to evaluate the computational cost and the practical running time
is benchmarked on NVIDIA 2080Ti GPUs.
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Table 1: Performance evaluation of APE. FLOPs, PSNR and SSIM on DIV2K
and DIV8K datasets with scaling factors ×2, ×3, ×4 are reported in the table. To
compare the performance of APE with baselines, incremental capacity threshold
is set to 0. Therefore, all the patches can exit at the optimal layers.

Method Scale
DIV2K DIV8K

FLOPS PSNR SSIM FLOPS PSNR SSIM

ECBSR ×2 1.38G 33.86dB 0.9309 1.38G 39.82dB 0.9649
ECBSR-APE ×2 1.37G 33.87dB 0.9316 1.37G 39.73dB 0.9646
VDSR ×2 6.17G 33.63dB 0.9286 6.17G 39.71dB 0.9640
VDSR-APE ×2 6.14G 33.62dB 0.9292 6.15G 39.54dB 0.9636
RCAN ×2 35.36G 34.09dB 0.9330 35.36G 40.04dB 0.9657
RCAN-APE ×2 35.36G 34.36dB 0.9357 35.36G 40.22dB 0.9663
EDSR ×2 93.89G 34.21dB 0.9343 93.89G 39.97dB 0.9656
EDSR-APE ×2 93.89G 34.46dB 0.9366 93.89G 40.16dB 0.9662

ECBSR ×3 1.40G 30.22dB 0.8606 1.40G 35.36dB 0.9158
ECBSR-APE ×3 1.40G 30.16dB 0.8618 1.40G 35.31dB 0.9159
VDSR ×3 13.88G 29.99dB 0.8567 13.88G 35.15dB 0.9133
VDSR-APE ×3 13.88G 29.92dB 0.8574 13.88G 35.15dB 0.9138
RCAN ×3 35.80G 30.45dB 0.8645 35.80G 35.44dB 0.9171
RCAN-APE ×3 35.74G 30.59dB 0.8695 35.76G 35.65dB 0.9192
EDSR ×3 100.77G 30.55dB 0.8669 100.77G 35.54dB 0.9178
EDSR-APE ×3 100.77G 30.66dB 0.8711 100.77G 35.68dB 0.9197

ECBSR ×4 1.43G 28.29dB 0.8026 1.43G 33.07dB 0.8724
ECBSR-APE ×4 1.43G 28.31dB 0.8036 1.43G 33.05dB 0.8719
VDSR ×4 24.68G 28.12dB 0.7974 24.68G 32.88dB 0.8688
VDSR-APE ×4 24.53G 28.10dB 0.7991 24.53G 32.83dB 0.8689
RCAN ×4 36.77G 28.52dB 0.8077 36.77G 33.25dB 0.8753
RCAN-APE ×4 36.71G 28.70dB 0.8138 36.74G 33.38dB 0.8776
EDSR ×4 115.83G 28.66dB 0.8112 115.83G 33.30dB 0.8762
EDSR-APE ×4 115.79G 28.78dB 0.8158 115.81G 33.39dB 0.8779

4.2 Evaluation of APE

Performance Results To evaluate the effectiveness of our method, we apply
APE to state-of-the-art SR networks, including ECBSR [27], VDSR [9], EDSR
[14] and RCAN [28]. We set the threshold of incremental capacity to 0 and
evaluate the performance of APE on DIV2K and DIV8K. As we have mentioned
above, there are three types of patches. The over-fitting patches might achieve
worse performance with more layers. Therefore, setting the threshold to 0 enables
all the patches to exit at the optimal layers. As shown in Tab. 1, SR networks with
APE can achieve comparable or even superior performance compared to original
SR networks in terms of PSNR and SSIM. This comparison demonstrates that
incremental capacity is a more reasonable metric to evaluate the contribution of
each layer.
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Table 2: Efficiency evaluation of APE under the same performance as original SR
networks. Parameters, body FLOPs, total FLOPs, and practical inference times
on DIV2K with scaling factors ×2, ×3, ×4 are reported in the table. Inference
time is evaluated on NVIDIA 2080Ti GPUs.

Method Scale Param. PSNR Body FLOPs Total FLOPs Time (ms)

ECBSR ×2 1.0K 33.86dB 1.36G 1.38G (100%) 244
ECBSR-APE ×2 1.0K 33.82dB 0.99G 1.01G (73%) 211
VDSR ×2 0.67M 33.63dB 6.14G 6.17G (100%) 346
VDSR-APE ×2 0.67M 33.61dB 4.13G 4.16G (67%) 334
RCAN ×2 15.4M 34.09dB 34.91G 35.36G (100%) 2323
RCAN-APE ×2 15.4M 34.09dB 8.26G 8.71G (24%) 974
EDSR ×2 40.7M 34.21dB 87.01G 93.89G (100%) 2133
EDSR-APE ×2 40.7M 34.21dB 34.07G 40.95G (43%) 733

ECBSR ×3 1.0K 30.21dB 1.36G 1.40G (100%) 239
ECBSR-APE ×3 1.0K 30.12dB 1.01G 1.05G (74%) 219
VDSR ×3 0.67M 29.99dB 13.80G 13.88G (100%) 346
VDSR-APE ×3 0.67M 29.91dB 11.01G 11.09G (79%) 325
RCAN ×3 15.6M 30.45dB 34.91G 35.80G (100%) 1040
RCAN-APE ×3 15.6M 30.45dB 13.57G 14.46G (40%) 627
EDSR ×3 43.7M 30.55dB 87.01G 100.77G (100%) 1777
EDSR-APE ×3 43.7M 30.55dB 49.28G 63.04G (62%) 492

ECBSR ×4 1.0K 28.29dB 1.36G 1.43G (100%) 245
ECBSR-APE ×4 1.0K 28.22dB 0.85G 0.92G (64%) 196
VDSR ×4 0.67M 28.12dB 24.55G 24.68G (100%) 345
VDSR-APE ×4 0.67M 28.07dB 17.75G 17.88G (72%) 303
RCAN ×4 15.6M 28.53dB 34.91G 36.77G (100%) 620
RCAN-APE ×4 15.6M 28.53dB 10.53G 12.39G (33%) 350
EDSR ×4 43.1M 28.66dB 87.01G 115.83G (100%) 1123
EDSR-APE ×4 43.1M 28.67dB 49.86G 78.68G (67%) 419

Efficiency Results As for the efficiency of APE, Tab. 2 shows the detailed com-
putational cost under same performance as original SR networks. Our method
adds a lightweight regressor whose FLOPs is negligible. APE can significantly
reduce the computational cost of original SR networks across different scaling
factors. For example, RCAN-APE only needs 24%, 40%, and 33% of original
computational cost on scaling factors ×2, ×3 and ×4. The computational cost
of body is significantly reduced by our method, and the computational costs of
head and tail stay the same. Overall, our method can nearly halve the compu-
tational cost under the same performance.

Scalability Results We also show the performance-efficiency trade-off results
in Fig. 3 to demonstrate the scalability of APE. By controlling the incremental
capacity threshold, APE can achieve scalable performance-efficiency trade-off.
Therefore, we can deploy one APE SR network on platforms with different com-
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Fig. 3: Quantitative results of performance-efficiency trade-off. We apply APE
to ECBSR, VDSR, EDSR and RCAN with scaling factors ×2 and ×4 on DIV2K
dataset. Average FLOPs of all 48×48 LR patches and PSNR/SSIM calculated
on the full image are reported.

putational resources. For the device with low computational resource, we can
raise the threshold to get lower performance and faster inference speed.

Visual Results Fig. 4 shows the qualitative comparison of our method against
the original SR networks. As we can see, EDSR-APE and RCAN-APE can
achieve same or even better visual results compared with original SR networks.
Although we merge the patches to obtain complete SR images, weighting over-
lapped patches can avoid the stitching artifacts.

Fig. 5 visualizes the status of adaptive exiting patches. As can be seen, most
patches in smooth regions exit at the early layers since they are easy to be
restored. As for patches in complicated regions, they will exit at the later lay-
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Fig. 4: Qualitative results of APE and original SR networks on DIV2K dataset
with ×4 scaling factor.

ers. This is consistent with the motivation of applying appropriate networks to
various difficulties.

4.3 Ablation Study

Variants of Exit Interval We conduct the experiment to study the influence
of different exit intervals using EDSR as the backbone. Specifically, EDSR has
32 repeated residual layers in the body. We evaluate the exit intervals of 4, 2 and
1 layers. The results on DIV2K dataset with scaling factors ×2 are shown in Fig.
6. As can be seen, exit interval of 4 layers achieves the best results, indicating
that multi-exit SR networks need sufficient learning capacity within each exit.

Variants of Early-Exit Signal Apart from the proposed incremental capacity
(IC), we can also use the absolute performance (AP ) of each layer as the early-
exit signal to measure the necessity of early-exiting at specific layer. We compare
the results of incremental capacity and absolute performance in Fig. 7. As can
be seen, compared with absolute performance, incremental capacity can reduce
more computational cost, validating that incremental capacity is the better early-
exit signal for multi-exit SR networks.

Variants of Patch Size and Stride Since our method splits an image into
patches, we evaluate the performance of different patch sizes and strides. As
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(a) Original image (b) Adaptive exiting patches

Fig. 5: Visualization of early-exit patches. The number in the patch indicates the
exit index of each patch. Best viewed by zooming x4.
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Fig. 6: Variants of exit interval. We
show the results of different exit in-
tervals by evaluating EDSR-APE on
the DIV2K dataset with scaling factors
×2. APE-n means APE with n exits.
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Fig. 7: Variants of early-exit signal. IC
denotes incremental capacity, and AP
denotes absolute performance. Both
are evaluated on DIV2K dataset with
×2 scaling factor.

shown in Tab. 3, different patch size can achieve similar performance in terms
of PSNR and SSIM.

4.4 Comparison with ClassSR and AdaDSR

We also compare with ClassSR [10] and AdaDSR [15] on DIV2K ×4 using RCAN
as the backbone under the same performance in Tab. 4. We use the published
codes of AdaDSR and ClassSR to perform the comparison. ClassSR [10] is a
patch-based SR method. It manually designs easy, medium and hard networks
by changing the number of channels. A module is trained to classify the patches
into easy, medium and hard. ClassSR [10] can reduce the overall computational
cost by applying different networks to different patches. However, they need to
store all the models with different capacities, heavily increasing the model size.
Apart from this, ClassSR classifies the patches into certain restoration difficul-
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Table 3: Variants of patch size and
stride. PSNR and SSIM are evaluated
on DIV2K dataset with scaling factor
×4. The numbers in the Patch column
indicate (patch size, patch stride).

Method Patch PSNR SSIM

EDSR - 28.66 0.8112
EDSR-APE (32,30) 28.702 0.8136
EDSR-APE (40,38) 28.723 0.8151
EDSR-APE (48,46) 28.783 0.8158

Table 4: Comparison with AdaDSR
and ClassSR, APE achieves fastest in-
ference speed without increasing the
model’s size. Besides, APE is scalable
to different computational resources.

Method Param. PSNR Time

RCAN 15.6M 28.526 620ms
RCAN-APE 15.6M 28.530 350ms
RCAN-Ada 15.7M 28.535 1644ms
RCAN-ClassSR 30.1M 28.533 22s

ties. Therefore, it is not scalable over different computational resources. Instead,
our method can easily adjust the trade-off between performance and efficiency
to meet different computational resources.

We also compare with AdaDSR [15], which is based on pixel-wise sparse
convolution. It will generate a spatially sparse mask for each layer and sparse
convolution is conducted to achieve speedup. However, pixel-wise sparse convo-
lution is not hardware-friendly on modern GPUs, thus there exists a gap between
theoretical and practical speedup. As can be seen in Tab. 4, with similar model
size, APE is faster than AdaDSR in practice.

5 Future Work

Although our method can decide the optimal exit for each patch, we still rely on
overlapped patches to avoid the stitching artifacts. Therefore, we can further im-
prove the efficiency by adopting non-overlapped patches. Besides, we uniformly
split an image into patches, which might not be the optimal solution for image
splitting. Finally, applying our method to other low-level vision tasks is also a
promising future work.

6 Conclusion

In this paper, we present adaptive patch exiting (APE) for scalable single image
super-resolution. Since image patches are structured and have different restora-
tion difficulties, we split an image into patches and train a regressor to predict
the incremental capacity of each layer for the input patch. Therefore, the patch
can exit at any layer by adjusting the threshold. We also propose a novel joint
training strategy to train both the SR network and regressor. Extensive compar-
isons are conducted across various SR backbones, datasets and scaling factors
to demonstrate the effectiveness of our method.
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