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In this appendix, we present more detailed comparisons with other neural
video delivery method. In addition, we further apply EMT on long videos with
more settings.

1 Supplementary Comparisons with Neural Video
Delivery Methods

We report the supplementary comparisons with H.264/H.265, CaFM [2], SRVC
[1], and DVC [3] on more video sequences of VSD4K dataset. For the two com-
mercial codec standards H.264 and H.265, we use ffmpeg with libx264 codec and
libx265 codec to compress the HR videos at lower bit-rate while maintain the
resolution. We obtain these compressed videos of the same size as our method
(LR video and models). We also compare our method with DVC at four different
bitrate-distortion trade-off operating points λ ∈ {256, 512, 1024, 2048} (DVC1,
DVC2, DVC3, DVC4). As shown in Fig. 1, our method outperforms these meth-
ods under same or less storage size in most cases. In Tab. 1, EMT achieves
promising results compared with other methods with less training time in most
circumstances, demonstrating the advantage of our method.

2 Extension to Long Videos

In this section, we report more results on long videos of VSD4K [2]. For long
videos, previous neural video delivery methods take too much computational
cost. Therefore, we only compare with commercial codec standards. We evaluate
our method under two settings, which are denoted as M ′ and M separately. M ′

uniformly divides the long video into 5-second chunks and sequentially delivers
the content-aware SR models. M first divides the long video into groups and
applies EMT to each group. To be specific, we extract all the I-frames from the
input video and make each group contain 30 I-frames. As shown in Tab. 2, both
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Fig. 1: Comparisons with neural video delivery methods in terms of PSNR and
storage.

of our methods outperform commercial codec standards on long videos, showing
the great potential of our approach. In addition, the margins of M surpasses the
margins of M ′ since the temporal consistency between neighboring chunks is not
always true for long videos. Dividing the long video into groups further improve
the results of EMT.

Table 1: Comparisons with neural video delivery in terms of PSNR and training
time. Red and blue indicate the best and the second best results among all
methods.

inter-45s sport-45s vlog-45s dance-45s game-45s city-45s

Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time
C1-n 38.95 11.2h 46.03 11.2h 46.20 11.2h 43.47 11.2h 35.61 11.2h 36.44 11.2h
CaFM 38.90 10.2h 46.12 10.2h 46.45 10.2h 43.63 10.2h 35.96 10.2h 36.43 10.2h
SRVC 37.26 12.1m 41.38 12.1m 45.59 12.1m 40.87 12.1m 33.34 12.1m 34.97 12.1m
DVC1 31.98 35.6m 35.52 33.6m 37.86 31.5m 27.67 38.4m 31.76 35.8m 32.30 36.2m
DVC2 34.44 36.1m 37.45 34.3m 39.92 30.8m 32.46 37.9m 33.93 36.0m 34.65 35.9m
DVC3 36.60 37.1m 39.58 34.8m 41.67 31.3m 34.40 38.5m 36.10 36.5m 37.00 36.6m
DVC4 38.70 38.0m 41.28 34.8m 43.22 33.6m 36.33 39.1m 38.10 36.2m 39.03 38.0m

Ours(M) 39.18 7.6m 46.25 7.6m 46.71 7.6m 44.24 7.6m 36.51 7.6m 36.42 7.6m

3 Further ablation study

We further evaluate the effectiveness of meta-tuning. Shown in Tab. 3, P1−n

removes meta-tuning but still reserves the pretrained model on DIV2K while
MP1−n eliminates the pretrain model on DIV2K and adopts meta-tuning strat-
egy to train from scratch. As can be seen, pretrained model on DIV2K along
with the meta-tuning strategy contribute jointly to the overall performance of
EMT.
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Table 2: Comparisons with H.264 and H.265 on long videos. We show the results
of ourM ′ andM methods using 3 epochs for fine-tuning. The storage is measured
in megabytes and Acc is measured in PSNR. Margin indicates the difference of
our method and H.265.

vlog-5min vlog-10min vlog-20min vlog-30min
Acc Storage Acc Storage Acc Storage Acc Storage

H.264 34.45 18.58 35.08 35.41 35.05 70.75 34.88 144.41
H.265 36.67 18.58 37.08 35.41 37.11 70.75 37.00 144.41
Ours(M ′) 37.44 18.58 37.99 35.41 38.17 70.75 38.21 144.41
Margin +0.77 - +0.91 - +1.06 - +1.21 -
H.264 34.68 18.62 35.78 35.64 35.29 71.19 35.02 145.12
H.265 36.75 18.62 37.15 35.64 37.18 71.19 37.07 145.12
Ours(M) 37.67 18.62 38.33 35.64 38.31 71.19 38.41 145.12
Margin +0.92 - +1.18 - +1.13 - +1.34 -

Table 3: Effectiveness of meta-tuning.

Method PreD MT CPS
inter-45s sport-45s

PSNR Time PSNR Time

P1−n ✓ - ✓ 39.08 18.4m 46.11 4.2m
MP1−n - ✓ ✓ 39.08 2.2m 46.11 11.3m
Ours(S) ✓ ✓ ✓ 39.08 1.2m 46.11 1.2m

4 Further comparisons with baseline

In this section, we demonstrate the advantages of EMT compared with baseline.
Shown in Tab. 4, We set the default training epoch of C1−n to 300 and add
a baseline method C∗

1−n under 1000 epochs. Both C1−n and C∗
1−n are trained

from scratch. We further adopt a pretrained model on DIV2K for the baseline
method, denoted as C∗p

1−n. As can be seen, training with more epochs along with
adopting pretrained model can further improve the baseline result. Both C∗

1−n

and C∗p
1−n reach the highest PSNR at about 800 epochs. Nevertheless, our result

is still competitive with C∗p
1−n and significantly faster.

Table 4: Comparisons with baseline [29].
inter-45s sport-45s dance-45s

PSNR Time PSNR Time PSNR Time

C1−n 38.95 11.2h 46.03 11.2h 43.47 11.2h
C∗

1−n 39.23 29.8h 46.44 29.8h 43.79 29.8h
C∗p

1−n 39.48 29.8h 46.54 29.8h 44.09 29.8h
Ours(L) 39.56 55.5m 46.41 1.76h 44.59 1.53h
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