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(a) Input image (b) MSEC [1] (c) ZeroDCE [14]

(d) RUAS [29] (e) Ours (f) Ground truth

Fig. 1: Given an input image (a) with both over-exposure (background windows)
and under-exposure (foreground persons), existing methods fail to handle both
problems well. While (b) performs better on the background, the foreground is
only slightly brightened. Although (c) performs better on the foreground, the
background is still over-exposed. (d) slightly brightens the foreground but further
over-exposed the background. In contrast, our method (e), which is based on
learning local color distributions, can handle both problems well. The textures
of the window curtains and the patterns of the clothes can both be seen clearly.

Abstract. Existing image enhancement methods are typically designed
to address either the over- or under-exposure problem in the input image.
When the illumination of the input image contains both over- and under-
exposure problems, these existing methods may not work well. We ob-
serve from the image statistics that the local color distributions (LCDs)
of an image suffering from both problems tend to vary across different
regions of the image, depending on the local illuminations. Based on this
observation, we propose in this paper to exploit these LCDs as a prior
for locating and enhancing the two types of regions (i.e., over-/under-
exposed regions). First, we leverage the LCDs to represent these regions,
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and propose a novel local color distribution embedded (LCDE) mod-
ule to formulate LCDs in multi-scales to model the correlations across
different regions. Second, we propose a dual-illumination learning mech-
anism to enhance the two types of regions. Third, we construct a new
dataset to facilitate the learning process, by following the camera im-
age signal processing (ISP) pipeline to render standard RGB images
with both under-/over-exposures from raw data. Extensive experiments
demonstrate that the proposed method outperforms existing state-of-
the-art methods quantitatively and qualitatively. Codes and dataset are
in https://hywang99.github.io/lcdpnet/.

1 Introduction

When taking photos, the illumination condition of a scene may not always be
ideal, and the photos may suffer from under-exposure (due to low-light/back-
light) or over-exposure (due to some intense lights inside the image region). Of-
ten, both over- and under-exposures may occur together in the same image due to
unbalanced lighting conditions. The illumination may change significantly, bury-
ing the local image contents in both over- and under-exposed regions, as shown
in Fig. 1(a). While photography experts may leverage high-end DSLR cameras
and carefully tune them (e.g., the aperture, ISO, and special filters) to alleviate
the problem, it requires photography expertise and expensive equipment.

Many methods have been proposed to enhance the quality of images that are
captured with poor illumination conditions. A line of methods focus on enhanc-
ing the under-exposed images captured in low-light scenes via the Retinex based
approach [33], bilateral learning [13], generative adversarial learning [11], deep
parametric filtering [23], and self-supervised [14] or semi-supervised learning [39].
Other works [4,1] try to enhance the over-exposed or under-exposed images in
one network. All these methods typically assume the scene illumination to be
generally uniform, such that an improper exposure would result in either over-
or under-exposure. Hence, they tend to adjust the image intensity globally, i.e.,
either increasing or decreasing the intensity. However, if the illumination of a
scene is non-uniform, causing the input image to suffer from both over- and
under-exposures as shown in Fig. 1(a), existing methods may not work well. For
example, ZeroDCE [14] (c) and RUAS [29] (d) worsen the over-exposure problem
at the background regions as they try to enhance the under-exposed foreground
persons. On the other hand, while MSEC [1] (b) enhances the foreground slightly,
it produces some color distortions around the background windows.

In this paper, we aim to address both over- and under-exposure problems
appearing in a single image. The key challenge is how to effectively separate
these two types of regions and recover their local illuminations accordingly. We
observe that the local color distributions (LCDs), which consist of regional local
histogram vectors, can be a reliable prior to address this challenge for two rea-
sons. First, we note that these LCDs in the over- and under-exposed regions show
significant divergences and deviate from those in the properly exposed regions.
Hence, they can be used to help identify and separate different types of regions.

https://hywang99.github.io/lcdpnet/
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Second, while it may not be reliable to directly infer the true scene lighting from
the image with both over- and under-exposures, colors are important cues that
are readily available in the image. Modeling the LCDs essentially help estimate
the proper local illumination and recover the buried contents. Based on our ob-
servation, we propose a novel neural network to jointly tackle the two problems
(i.e., both over- and under-exposure problems) with two novel modules: (1) the
local color distribution embedded (LCDE) module to formulate LCDs in multi-
scales to learn the representations of over- and under-exposed regions as well as
their correlations, and (2) the dual-illumination learning mechanism to constrain
the learning of the LCDE module, estimate and combine an over-illumination
map and an under-illumination map for enhancing the image. In addition, as
existing datasets (e.g., [1,10,33,5]) contain mostly images with either over- or
under-exposure, we further construct a new image dataset containing ∼ 1, 700
diverse scenes with both over- and under-exposures, to facilitate training and
evaluation. We follow the camera ISP pipeline by applying linear transform
functions and clipping on the pixel intensity of the input raw images to render
sRGB images. As shown in Fig. 1(e), our proposed method based on the LCD
prior brightens the under-exposed regions while darkening the over-exposed re-
gions, allowing the textures of the over-exposed window curtains to be revealed
as well as the patterns of the under-exposed sweaters that the two persons are
wearing to become visible.

Our main contributions of this work can be summarized as follows:

– We propose to exploit the local color distributions (LCDs) to jointly address
both over- and under-exposure problems in the input image, and a neu-
ral network to leverage the LCDs for locating and enhancing over-/under-
exposed regions of the image.

– We propose the LCDE module to formulate multi-scale LCDs in order to
learn the representations of over- and under-exposed regions as well as their
correlations to the global illumination. We also propose a dual-illumination
estimator to combine both over- and under-illumination maps to enhance
the input image.

– We construct a new paired dataset consisting of over 1700 images of diverse,
non-uniformly illuminated scenes to facilitate the learning process.

– Extensive experiments demonstrate that the proposed method outperforms
state-of-the-art methods qualitatively and quantitatively on the popular
MSEC [1] and our datasets.

2 Related Work

Image-to-Image Translation-Based Methods. A line of methods enhance
under-exposed images by learning different image-to-image translation map-
pings. Histogram equalization [26] and gamma correction are the most repre-
sentative methods. Some methods propose to combine global and local contrast
enhancement operators with semantic region detection (e.g., face, building and
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sky) [20], regional templates [16] or contrast statistics along image boundaries
and in textured regions [30].

Recent deep-learning based methods typically learn the mapping functions
using high-quality retouched images or images taken using high-end cameras,
with bilateral learning [13], intermediate HDR supervision [40], multi-stage restora-
tion [42,9], generative adversarial learning [17,11,19,27], or reinforcement learn-
ing [24,41]. Cai et al. [4] propose to enhance an under-exposed image by sepa-
rately modeling the illuminance and detail layers from multiple exposure images.
Moran et al. [32] propose to learn a set of piece-wise linear scaling curves and ap-
ply them in different color spaces for under-exposed image enhancement. Xu et
al. [37] propose to enhance under-exposed images based on frequency decompo-
sition. In [23], different kinds of local parametric filters are learned for image
enhancement. Mahmoud et al. [1] propose a coarse-to-fine network to learn color
and detail enhancement for addressing either over- or under-exposure.

Retinex-Based Methods. Another line of works are Retinex-based image en-
hancement methods [15,12,44,3,33,45]. They first decompose the input image
into illumination and reflectance layers, and then enhance the illumination layer
of the image. Conventional optimization based methods [15,12,3] propose differ-
ent hand-craft priors for constraining the illumination or reflectance layers. Deep
learning based methods [10,33,45,29] learn such intrinsic decomposition from a
large amount of data. For example, DeepUPE [33] propose to directly estimate
the proper illumination layer from the input under-exposed image via bilateral
learning [6]. Most recently, Liu et al. [29] propose an architecture search based
method to leverage cooperative priors for under-exposed image enhancement.

Limitation of Existing Works. All aforementioned methods typically assume
that only either over- or under-exposure problem would appear in a single image.
Hence, they tend to brighten the under-exposed images or darken the over-
exposed images, but lack the capability to tackle images with both over- and
under-exposures. In this paper, we aim to tackle this common shortfall. We first
construct a new dataset, and propose a LCD prior guided deep-learning approach
for enhancing images containing both over- and under-exposures.

3 Proposed Dataset

To study our problem, we first revisit a recently published large-scale image
enhancement dataset, the Multi-Scale Exposure Correction (MSEC) dataset [1].
Although it contains images with different levels of over- or under-exposures,
each of the images is either over- or under-exposed. We visualize the luminance
intensity mapping between input and reference images in Fig. 2. Fig. 2(a) shows
that the shapes of the luminance mappings for individual images from the MSEC
dataset [1] are either concave or convex. These luminance mappings do not show
any non-uniform illumination exhibited from images that suffer from both over-
and under-exposures. Statistics shown in Fig. 2(d) demonstrate that the MSEC
model [1] trained on this dataset either brightens or darkens the input image
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Output of MSEC model

Luminance mapping of MSEC model

Fig. 2: The input-ground truth luminance map-
ping curve of (a) MSEC dataset [1], (b) LOL
dataset [10], and (c) our dataset. Each cluster
represents an image. For a single image, both
(a) and (b) contains a single mapping of either
brightening or darkening. (d) is the input-output
mapping learned by the model trained on the
MSEC dataset when given (e, f) as the input.

Input images

Ground truth

Fig. 3: Some input-ground
truth pairs in our dataset.
Our dataset contains images
of over 1700 scenes.

(see Fig. 2(e,f) for illustration). Fig. 2(b) shows the statistics of the luminance
mappings for the images from the LOL dataset [10], which is a popular low-
light image enhancement dataset. We can see that it only allows the learning
of under-exposure enhancement. This means that methods trained on the LOL
dataset [10] would typically brighten the input images. This demonstrates that
a new dataset containing both over- and under-exposures in individual images
is desired.

We construct our dataset from the raw images in the MIT Adobe5k dataset [2],
which contains 5000 raw and expert-retouched sRGB image pairs for learning
the tone mapping process. Since raw images have higher dynamic ranges to
preserve scene information than sRGB images and their intensities are linearly
proportional to the scene radiance, we generate our input images of both over-
and under-exposures from the raw images. We use the expert-retouched sRGB
images as our ground truth images. However, we note that not all raw images in
this dataset are suitable for generating our images with both over- and under-
exposures (e.g., synthesizing over-exposure from a very dark image would likely
produce an unrealistic image), and many expert-retouched images contain very
dark/bright regions that cannot be used to form our ground truth images.

In order to generate high-quality learning pairs, we formulate the dataset
generation pipeline in three steps as: (1) We manually go through all the image
pairs in Adobe5k, and remove those pairs whose expert-retouched images contain
very dark or very bright regions. (2) For each candidate raw image from (1), we
follow the camera ISP pipeline to render an sRGB image with both over- and
under-exposures, by adjusting the exposure level with a linear transformation
function. (3) For each rendered sRGB image from (2), we ask a volunteer (who
is a photographer) to help assess its quality. If the volunteer points out that the
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(a) Input (b) MSEC (c) CLAHE (d) GT

Fig. 4: MSEC [1] (b) enhances the input image (a) with a better overall visual
quality, while CLAHE [28] (c) produces more faithful details in the local regions.

rendered image is not realistic or has obvious artifacts (e.g., color bleeding), we
feed it back to step (2) to produce another sRGB image for re-assessment. This
iterates until we have a good quality image, or after five iterations and we simply
discard this pair.

The linear mapping function used in step (2) is:

I ′(i, j) = ϕ [k (I(i, j)− 0.5) + 0.5] , (1)

where I is the input raw image whose pixel values range between [0, 1]. i, j are
the spatial position in the image, and ϕ[·] is the clipping operator to drop the
overflow value with the upper/lower bounds being 1/0. k is the slope value that
represents the scaling factor of the exposure level. We manipulate k to generate
images with over- and under-exposures. We apply Eq. 1 on all three channels of
the input raw image equally to obtain the final rendered sRGB image. In total,
we generate 1,733 pairs of images, which are split into 1,415 for training, 100 for
validation, and 218 for testing. Some sample pairs are shown in Fig. 3.

4 Proposed Method

The over- and under-exposed image enhancement task could be formulated as
seeking a mapping function F , which maps an 8-bit per channel sRGB image
Ix to an enhanced image Iy such that Iy = F (Ix). Instead of directly learning
the image-to-image translation model or Retinex-based image-to-illumination
mapping model, we propose to learn a region-aware illumination mapping model
by learning to exploit the multi-scale LCDs and dual-illumination estimation.

4.1 Local Color Distribution (LCD) Pyramid

Directly inferring the true scene lighting from a single image is challenging, es-
pecially when the input image contains both over- and under exposures. Instead,
as the color is a key component of scene lighting preserved in the image, we can
leverage the local color information to help build representations of regional illu-
minations. Fig. 4(c) shows an example, where the color histogram based method
CLAHE [28] recovers more details than the latest deep method MSEC [1] in both
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Fig. 5: Overview of our proposed network. It leverages the LCD pyramid with an
encoder-decoder architecture for detecting the regions with problematic expo-
sures implicitly, and the for enhancement of the over- and under-exposed regions.

over- and under-exposed regions. However, CLAHE [28] tends to produce im-
ages of inconsistent colors, due to its lack of global information. We model LCDs
based on CLAHE [28], and extend it to be a multi-scale pyramid in our neu-
ral network, in order to tackle the inconsistency by learning the local-to-global
illumination correlations.
Building the LCD Pyramid. Given an input image Ix of size h × w, whose
pixel values range between [0, 1], we split Ix into N = [h/K] · [w/K] patches,
where [·] is the closest-integer operator. We define a LCD as the color histogram
within a local patch of size K × K. We then use the 4D LCD map MK to
represent the distribution of scale K. We first build a h× w bilateral grid Γ [7]
by splatting the pixel histogram voting along the range dimension, and then we
compute Mk using:

Mk(

[
i

K

]
,

[
j

K

]
, c, b) =

1

K2

∑
p,q∈ΩK(i,j)

Γ (p, q, c, b), (2)

where i, j, c are the horizontal, vertical, and channel indices of the image, re-
spectively. b is the index to the histogram bins, which can be computed by
b = [Ix(i, j, c) ·B]. ΩK(i, j) returns the indices of the pixels in the K ×K patch
that pixel (i, j) belongs to.

By assigning K with different values, we obtain LCD maps at different scales,
e.g., M1 is the pixel-wise color distribution, where the local histogram vector in
M1 is a sparse one-hot vector. When K increases, the locality representation of



8 H. Wang, K. Xu and R. Lau.

MK grows correspondingly. LetK take its value from {2l, l ∈ N+}.M = {MK} is
then a multi-scale LCD pyramid with different levels of color distribution maps.
A LCD pyramid contains regional illumination distributions in multi-scale, as
visualized in Fig. 6. It can help differentiate over-/under-exposed regions.

4.2 Proposed Network

Fig. 5 shows the overview of the proposed network. It has an encoder-decoder [31]
architecture, incorporating the LCDE module to leverage the LCD pyramid for
learning the representations of over- and under-exposed regions and the dual-
illumination mechanism for adaptive enhancement.
LCDE module. In order to learn adaptive representations for over- and under-
exposed regions, we propose the LCDE module to predict the adaptive con-
volutional kernels with the guidance of the LCD pyramid. Our design of the
LCDE module is based on DRconv [8] (originally proposed for high-level im-
age classification and detection tasks). We choose DRconv [8] to exploit its idea
of producing region-wise kernels. Unlike DRconv [8] that learn different kernels
according to the local semantics, which are not reliable in the over- and under-
exposed regions, we learn different kernels according to the local illuminations
guided by the local color distributions.

Specifically, the LCDEmodule has two branches, i.e., the convolution-kernels-
generation branch and the guided-mask-prediction branch (bottom right part of
Fig. 5). The first branch takes as input the precursor feature map and produces
the parameters of n kernels {W1,W2, ...Wn}. The guided-mask-prediction branch
inputs the LCD map MK , and uses it to guide the prediction of a multi-value
mask for dividing the spatial feature maps into n regions in order to apply differ-
ent convolution kernels on different regions. By applying a different convolution
kernel on a different region, the multi-scale LCD pyramid guides the network to
differentiate regions of different exposures and enhances them separately.

To handle high resolution inputs, we construct this module upon the bilateral
upsampling method [6,7] to achieve a fast inference speed.
Dual-illumination Estimation. To constrain the model to learn the exposure-
aware masks, we exploit the Retinex theory in our model. The Retinex based
methods (e.g., [33]) typically decompose the input image Ix into an illumination
map L and a reflectance map R. By considering the reflectance map R as the
enhanced image, DeepUPE [33] generates the under-exposure enhanced result
Iuy with Iuy = R = Ix · L−1. Since the values in L fall within [0, 1], the pixel
values in the result image are always larger than the those of the input image.
Hence, these methods cannot suppress over-exposure. To address this problem,
we propose to extend the illumination prediction mechanism of [33] to dual-
illumination prediction mechanism by incorporating dual-path learning in [43].
The main idea here is that over-exposures in Ix could be regarded as under-
exposures in the reverse image of Ix. By first computing the reverse image I ′x
via I ′x = 1− Ix, we can then compute the over-illumination map L′ of the input
image Ix in addition to the under-illumination map L. Thus, the over-exposure
enhanced images Ioy could be obtained by Ioy = 1−R′ = 1−I ′x ·L′−1, where L′ is
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the over-illumination map of Ix . L and L′ are estimated via the encoder-decoder
network with the LCDE module. The two enhanced components are then fused
by our fusion network to generate the final result.

LCD map
 LCD map channel 0  LCD map channel 1  LCD map channel 2  LCD map channel 3

 LCD map channel 4  LCD map channel 5  LCD map channel 6  LCD map channel 7

Image with uneven exposure

Fig. 6: The visualization of a LCD pyra-
mid layer, taking an over-/under-exposed
image as input. Over-/under-exposed re-
gions are implicitly separated along the
channel dimension.
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Fig. 7: Inferring the illumination
maps helps constrain the learning of
the guided mask. Our model implic-
itly assigns one decoder to each re-
gion type for adaptive enhancement.

Fusion Network. The fusion network f takes the two separately enhanced im-
ages, Iuy and Ioy , and the original image Ix as inputs to regress the final enhanced
image. It contains two convolution layers and two non-local [34] blocks. With
the non-local blocks, the network is able to capture long-range spatial correla-
tions across pixels. The fusion network fuses the three inputs by predicting a
3-channel weight map to generate the enhanced result Iy.

Given the input image Ix, the whole process of our method to produce Iy is:

Iy = f

(
Ix

m(Ix) ,
1− 1− Ix

m(1− Ix) ,
Ix

)
, (3)

where m represents the encoder-decoder network and f is the fusion network.
Why would our model work? Since the LCDE module applies n different
kernels on n regions, each region can be regarded as being assigned with an
individual decoder to learn the luminance mapping but without introducing
extra computational cost, while all regions share the same encoder for feature
extraction (see Fig. 7). In addition, by inferring the illumination maps, it helps
constrain the learning of the guided mask in the LCDE module to focus on the
exposure levels of these regions.

4.3 Loss Function

We adopt four loss terms to train our model. We apply the widely used MSE
term Lmse to measure the intensity reconstruction errors. To correct the color
distortions in the over- and under-exposed regions, we apply the cosine similar-
ity term Lcos [33,35,36], which measures the color similarity of the reconstructed
image and its ground truth in the sRGB color space. In addition, in order to
guide the network to estimate the illumination maps, we apply the local smooth-
ness term [33,38] to our dual-illumination estimation process, denoted as Ltv1
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(a) Input (b) HDRnet (c) DeepUPE (d) RetinexNet (e) DSLR

(f) ZeroDCE (g) RUAS (h) MSEC (i) Ours (j) GT

Fig. 8: Visual comparison of over-/under-exposed images from our dataset. Our
model reconstructs the details in the over-exposed regions (sky and tower) as
well as the under-exposed regions (wall and door).

and Ltv2, respectively. The local smoothness term aims to preserve the local
smoothness characteristics of image illuminations by minimizing their gradient
variations. The overall function can be written as:

Ltotal = λ1Lmse + λ2Lcos + λ3Ltv1 + λ4Ltv2, (4)

where λ1, λ2, λ3 and λ4 are the balancing hyper-parameters. Refer to the Sup-
plemental for more details on the loss functions.

5 Experiments

5.1 Implementation Details

We implement our model using PyTorch [25]. All our experiments are conducted
on a single NVIDIA GTX3080 GPU. The parameters of the network are opti-
mized by the ADAM optimizer [21] with β1 = 0.9, β2 = 0.999, and the learning
rate is 1e−4. The desired region number is set to n = 2, indicating over- and
under-exposed regions. The weights for the terms in the loss function in Eq. 4
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are λ1 = 1.0, λ2 = 0.5, λ3 = λ4 = 0.01. We utilize a 4-scale LCD pyramid and a
4-scale encoder-decoder network in our experiments. We implement the splatting
operation in Γ in Eq. 2 using the soft-histogram-voting in [22]. During training,
we resize the input images to 512×512 and apply random horizontal and vertical
flippings to augment the input data. The model reported in the experiments is
implemented based on a plain encoder-decoder network with 218K parameters.

Method PSNR↑ SSIM↑
HE [26] 16.525 0.696
CLAHE [28] 15.383 0.599
DSLR [18] (Sony) 18.020 0.683
DSLR [18] (BlackBerry) 17.606 0.653
DSLR [18] (iPhone) 15.907 0.622
RetinexNet [10] 11.135 0.605
DeepUPE [33] 13.689 0.632
ZeroDCE [14] 12.058 0.544
MSEC [1] 20.205 0.769

Ours 22.295 0.855

Table 1: Quantitative compar-
ison on the MSEC [1] test set.
Best performances are marked
in bold.

Method PSNR↑ SSIM↑ Method PSNR↑ SSIM↑
HE[26] 15.975 0.684 DSLRSony[18] 16.991 0.672
ClAHE[28] 16.327 0.642 DSLRBlackBerry[18] 17.215 0.693
LIME[15] 17.335 0.686 DSLRiPhone[18] 18.560 0.712
RetinexNet [10] 16.200 0.630 DSLR*[18] 20.856 0.758
RetinexNet*[10] 19.250 0.704 DeepUPE*[33] 20.970 0.818
MSEC*[1] 20.377 0.779 RUAS[29] 13.927 0.634
MSEC[1] 17.066 0.642 RUAS*[29] 13.757 0.606
ZeroDCE*[14] 12.587 0.653 HDRnet*[13] 21.834 0.818

Ours 23.239 0.842

Table 2: Quantitative comparison on the pro-
posed test set. * indicates that the model is re-
trained on our proposed training set. Best per-
formances are marked in bold.

5.2 Comparisons with State-of-the-art Methods

To verify the effectiveness of our method, we compare our model with the existing
exposure correction and image enhancement methods. We select three conven-
tional enhancement methods, including histogram equalization (HE), CLAHE [28]
and LIME [15], and seven deep-learning-based methods: ZeroDCE [14],
RetinexNet [10], MSEC [1], DSLR [18], HDRnet [13], DeepUPE [33] and RUAS [29].
We adopt the commonly used Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM) as our evaluation metrics.

Quantitative Comparison. Table 1 reports the performance evaluation on the
MSEC [1] test set. Both MSEC [1] and ours are trained on the MSEC [1] training
set, while other numbers are copied from MSEC [1]. From the table, we can see
that our method outperforms the second best method (i.e., MSEC [1]) by a large
margin. Table 2 further shows the comparison on our proposed test dataset. For
a fair comparison, we report the performances of existing deep learning based
methods using their pre-trained models as well as the models retrained on our
training set. The results show that our method outperforms all existing methods
on both PSNR and SSIM metrics.
Visual Comparisons. We visually compare the results of our method with
those of the existing methods. Note that all models used in this experiment
are retrained on our dataset for a fair comparison. Fig. 8 shows two examples
containing both over- and under-exposed regions from our dataset, and results
of existing methods and ours. We can see that our method can correct both
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(a) Input (b) DeepUPE (c) RetinexNet (d) DSLR (e) HDRnet

(f) ZeroDCE (g) RUAS (h) MSEC (i) Ours (j) GT

Fig. 9: Visual comparison of an over-exposed image from our dataset. Our result
has the best visual quality.

Method Oursplain Ourssingle OursDRconv Oursmse Oursmse+tv Ours

PSNR↑ 21.878 22.198 21.001 21.261 22.421 23.239
SSIM↑ 0.783 0.840 0.785 0.793 0.815 0.842

Table 3: Ablation study.

over- and under-exposed regions, and produce more visually pleasing details
and colors. We further show comparisons on images with large amount of over-
exposed pixels (Fig. 9) or under-exposed pixels (Fig. 10) from our dataset, an
image from the MSEC [1] dataset (Fig. 11), and two images from the Internet
(Fig. 12). These comparisons generally demonstrate that our method generalizes
well to different exposure levels and varying illumination conditions. Refer to the
supplemental for more visual comparisons.

5.3 Internal Analysis

Ablation study. In order to analyze the effectiveness of our proposed module
and pipeline, we perform ablation experiments on the network structure. Specif-
ically, we train four different models: (1) A plain encoder-decoder (Oursplain),
(2) Add LCDE modules to the decoder of (1) (Ourssingle), (3) Add the DR-
conv blocks [8] to the decoder of (1) (OursDRconv), (4) Add dual-illumination
estimation to (2) (Ours).

As shown in Table 3, the dual-illumination estimation or the LCDE mod-
ule significantly increase the performance, which verifies the effectiveness of the
dual-illumination learning and the local color distribution prior. The compari-
son between (2) and (3) shows that the performance gain of our model is mainly
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(a) Input (b) DeepUPE (c) MSEC (d) RetinexNet

(e) ZeroDCE (f) RUAS (g) Ours (h) GT

Fig. 10: Visual comparison of an under-exposed image from our dataset. Our
result has the best visual quality.

(a) Input (b) DeepUPE (c) DSLR

(d) MSEC (e) Ours (f) GT

Fig. 11: Visual comparison of an over-exposed image from the MSEC dataset [1].
Our result has the best visual quality and details.

due to the LCD pyramid prior instead of regional dynamic convolution. We also
perform the ablation study of loss function terms in Table 3. By comparing the
last three columns, we can see that gradually incorporating the local smoothness
term Ltv and the cosine similarity term Lcos consistently improves the enhance-
ment performance.
Visualization and interpretation. We visualize the intermediate results of
our network to examine whether the network has the region-aware capability.
Fig. 13 shows the predicted multi-scale guided mask features by the LCDE mod-
ule. We expect that under the guidance of LCD pyramid, the input images and
feature maps could be divided into different regions by the guided mask accord-
ing to the exposure level As shown in Fig 13, the intermediate guided masks of
the LCDE module generally divide the pixels into the bright region and dark
region when n = 2. This indicates that under the guidance of the LCDE module,
the network does learn the region-aware adaptive enhancement for input images.
Limitations. Fig. 14 shows two challenging cases that our method may fail to
enhance. If an image contains a large under-exposed region (Fig. 14(a)) or a large
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(a) Input (b) RUAS (c) MSEC (d) Ours

Fig. 12: Visual comparison on over-/under-exposed images from the Internet.
Our result has the best visual quality.

Layer 1 Layer 2

Layer 3 Layer 4

Input image

Ours

Fig. 13: The visualization of the learned guided
mask in multi-scales intermediate LCDE module
layers. With the guidance of the LCD pyramid and
the constraint of the dual-illumination map, the
model learns the guided mask adaptively.

(a) Input (b) Ours

(A) Input (B) Ours

Fig. 14: Failure cases. Our
method may fail to enhance
images with a large region of
under-exposed pixels (build-
ing in (b)) or over-exposed
pixels (sky in (B)).

over-exposed region (Fig. 14(A)), it may be difficult for our model to enhance
the region. As a future work, we would like to explore semantic scene layouts as
well as image inpainting techniques to handle this situation.

6 Conclusion

In this paper, we have tackled the image enhancement problem of correcting
images with both over- and under-exposed regions. We have proposed a new
dataset and designed a new end-to-end model to address the problem. We pro-
pose the LCDE module to detect over- and under-exposed regions under the
guidance of the local color distributions. We extend the Retinex theory based
illumination by proposing the dual-illumination estimator for better detail re-
construction. Extensive experiments show that our method performs favorably
against state-of-the-art methods.
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