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6 Appendix

6.1 Parameter Setting

We build three variants of our model to analyze the impact of different settings
for the color-object decoupling transformer. We present the parameter settings
and qualitative results of corresponding variants in Tab. 3 and Tab. 4. As can
be seen, the performance improves with the increasing number of parameters.
In the main paper, we report the results of L-CoDer (Large).

Table 3. Different parameter settings for model variants.

Model Blocks L Hiden size Cz MLP size Heads Params

L-CoDer (Small) 4 768 3072 12 28M

L-CoDer (Base) 8 768 3072 12 57M

L-CoDer (Large) 12 1024 4096 16 151M

Table 4. Qualitative results of model variants. ↑ (↓) means higher (lower) is better.

Model SSIM↑ LPIPS↓ LPIPS↓
L-CoDer (Small) 25.003 90.942% 0.171

L-CoDer (Base) 25.325 91.585% 0.161

L-CoDer (Large) 25.504 91.963% 0.159

# Equal contributions. * Corresponding author.
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6.2 Visualization of Applying OCCM

We visualize the attention maps before/after applying OCCM (Fig. 9 left) and
OCCM (Fig. 9 right) at layers 3, 6, and 9. As illustrated in Sec. 3.4 of the main
paper, the attention maps before applying OCCM are calculated by noun tokens
and image tokens to locate objects, which are transferred by the OCCM to guide
adjective tokens to colorize image tokens.
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Fig. 9. Left top/bottom: Attention maps before/after applying the OCCM [8]. The
brighter the region in the visualization, the greater the probability that the object
is located in that region. As the number of layers increases, attention maps before
applying the OCCM gradually find object positions corresponding to noun tokens (e.g.,
“sign” and “car” tokens), where mismatched positions (e.g., corresponding to “beside”
and “a”) are filtered by the OCCM. As a result, attention maps after applying OCCM
reveal the corresponding relationship between the image tokens and adjective tokens,
which ensures colors could be correctly applied to the corresponding regions. Right:
OCCM. Numbers in the matrix show the probability that noun tokens and adjective
tokens are in the same combination. As the number of layers increases, the OCCM
predicts combinations more accurately.
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6.3 Additional Quantitative and Qualitative Results

We qualitatively compare our L-CoDer with four automatic methods, e.g., CIC
[12], Deoldify [1], InstColor [5], and ChromaGAN [7]. We also make comparisons
with four language-based methods, e.g., LBIE [2], ML2018 [4], Xie2018 [9], and
L-CoDe [8]. We further create four baselines to demonstrate the effectiveness of
decouple, bidirection, evolution, and upsample, whose details are described in
Sec. 4.3 of the main paper.

To draw a more comprehensive evaluation of L-CoDer and other compari-
son methods mentioned above, we additionally use two quantitative metrics to
measure the synthetic image quality, i.e., R-precision (R-prcn) [10] and Fréchet
inception distance (FID) [3]. R-precision is used to evaluate whether colorized
images are well conditioned on the given language condition. FID [3] is a per-
ceptual similarity metric to evaluate the distance between the generated images
and original images with VGG backbone. Quantitative comparison and ablation
experiments with additional metrics are shown in Tab. 5, where our method
performs best on both metrics.

We show more experimental comparison results in Fig. 10 and Fig. 11. We
provide additional demonstrations of L-Coder’s advantages, i.e., unified modali-
ties, accurate color representation, and local robustness, in Fig. 12 (correspond-
ing to Fig. 1 of the main paper). We also show more ablation study results in
Fig. 13.

Table 5. Quantitative comparison result. L-CoDer (ours) performs best in two metrics.
↑ (↓) means higher (lower) is better.

Category Method R-prcn ↑ FID ↓

Automatic

CIC [12] 41.758% 30.841
DeOldify [1] 42.598% 30.471
InstColor [5] 42.397% 30.500

ChromaGAN [7] 42.920% 33.834

Language-based

LBIE [2] 42.276% 32.594
ML2018 [4] 43.443% 33.908
Xie2018 [9] 41.954% 33.137
L-CoDe [8] 44.046% 30.718

Ablation

W/o decouple 42.437% 33.685
W/o evolution 44.086% 33.323
W/o bidirection 43.282% 33.179
W/o upsample 42.316% 30.425

Ours
L-CoDer (Small) 43.161% 31.829
L-CoDer (Base) 43.322% 30.600
L-CoDer (Large) 47.103% 30.097
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6.4 Additional Ablation

We conduct “W/o decouple” ablation experiment by removing all the decoupling
modules and BCE loss to optimize the predicted OCCM. To further explore
whether “the loss alone is leading to the improved performance”, we design “w/o
BCE” ablation variant by removing BCE loss while remaining the decoupling
modules. As shown below, both the decoupling modules and BCE loss improve
the evaluation scores and alleviate the color-object mismatching problem (the
yellow on the big bin fades). It should be noted that the model must be equipped
with the decoupling modules to adopt the BCE loss. Otherwise, there are no noun
tokens Zobj and adjective tokens Zcol to predict OCCM Moccm as the optimized
term. Therefore, it is impossible to design an ablation variant without decoupling
modules that can predict OCCM to calculate BCE losses.

Method PSNR↑ SSIM↑ LPIPS↓ R-prcn ↑ FID ↓
W/o decouple 25.014 90.724% 0.173 42.437% 33.685

W/o BCE 25.179 91.029% 0.169 44.569% 32.688

Ours 25.504 91.963% 0.159 47.103% 30.097

W/o decouple W/o BCE L-CoDerGrayscale

A big bin filled with some ripe yellow bananas.

6.5 Failure Cases

We show two failure cases below. In the left case, there are color bleeding between
the two signs which is most likely caused by the adherent boundary at the small
overlapping region. On right, the kiwi fruit is colorized as orange under the
guidance of the adjective “colorful”. This is probably because our model could
not correctly recognize the semantics of some rare and small objects.

L-CoDer L-CoDerGrayscaleGrayscale

Stop sign and rectangular dark cyan sign. A colorful assortment of different foods.



L-CoDer 5

6.6 Additional user study

We conduct an additional user study to enrich our experiments using the fol-
lowing setting: We mix generated images from models and the real image, and
ask participants to choose the one that they think is real. This experiment also
follows the protocol in Sec. 4.2. As the results shown below, for the question
“what is real”, the pick rate of our model is very close to the ground truth,
which is the highest among related methods.

LBIE [2] ML2018 [4] Xie2018 [9] L-CoDe [8] Ours Ground truth

9.64% 11.44% 14.20% 15.60% 22.24% 26.88%

6.7 Model Size

We list the model size of other compared methods and L-CoDer variants below.
Note that the number of upstream task parameters is not counted, e.g., , detec-
tion model in InstColor [5] and pre-trained encoders in Xie2018 [9], L-CoDe [8]
and L-CoDer variants.

Automatic
CIC [12] DeOldify [1] InstColor [5] ChromaGAN [7]
32M 218M 34M 174M

Language-based
LBIE [2] ML2018 [4] Xie2018 [9] L-CoDe [8]
14M 18M 50M 21M

Ablation
W/o decouple W/o evolution W/o bidirection W/o upsample

132M 134M 151M 147M

Ours
L-CoDer (Small) L-CoDer (Base) L-CoDer (Large)

28M 57M 151M
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6.8 Application

We demonstrate the controllability of L-CoDer by colorizing photos with dif-
ferent captions in Fig. 14. We show more results of colorizing legacy photos in
Fig. 15 to demonstrate our generalization capability.

6.9 Upsampler Structure Details

We describe details of upsampling layers (corresponding to Sec. 3.6 of the pa-
per) in Tab. 6, where Deconv means deconvolution [11] and IN means instance
normalization [6].

Table 6. Detailed architecture of the upsampling layers.

Block Operation Channel number Kernel size Stride Padding Activation Norm

Up-1 Deconv 768 4 2 1 ReLU -

Conv-1 Conv 256 3 1 1 ReLU IN

Up-2 Deconv 256 4 2 1 ReLU -

Conv-2 Conv 128 3 1 1 ReLU IN

Up-3 Deconv 128 4 2 1 ReLU -

Conv-3 Conv 64 3 1 1 ReLU IN

Up-4 Deconv 64 4 2 1 ReLU -

Output Conv 32 3 1 1 tanh -
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An orange on the gray road.

Grayscale CIC [12] DeOldify [1] ChromaGAN [7] InstColor [5] Ours

A yellow fire hydrant that is in the wilderness.

An orange train riding on the tracks near a forest.

Fig. 10. More comparison results with CNN-based methods.

Traffic light under blue sky.

A slice of cake and a fork by orange slice and a guinness.

Small certain was child eating yellow donuts.

L-CoDe [8] OursML2018 [4] Xie2018 [9]LBIE [2]Grayscale

Fig. 11. More comparison results with Transformer-based methods.
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Some glazed yellow donuts are sitting on a counter.A couple of cats laying on top of a pink blanket.

L-CoDe [8] OursGrayscale L-CoDe [8] OursGrayscale

A cat on orange couch looking out the window. A white dog is on a sandy beach.

Man surfer on board riding a blue wave. Two brown ponies in grassy field next to a fence.

A large bear swimming in a pool of cyan water. An orange and white cat laying on a bag.

White plate with an egg next to fresh salad. Variety of donuts in  cardboard box.

The dessert in plate is next to a glass of juice. The box is full of colorful food.

Fig. 12. Additional demonstrations of L-Coder’s advantages. Row 1&2: our method
understands intrinsic color properties behind the word. Row 3&4: our method gener-
ates accurate and plausible colors. Row 5&6: our method has stronger robustness to
locally strong variation of texture or luminance.
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A cat with blue eyes sitting on a pink bed.

An orange cat looks through a glass plate.

A man in a green shirt stands by a girl holding a piece of cake on a plate.

A yellow book with a black pen on it.

A small boy in a blue shirt holding a banana peel.

W/o bidirection OursW/o decouple W/o envolutionGrayscale W/o upsample

Three vases with different designs holding red flowers.

Fig. 13. More ablation study results.
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A(n) purple/orange/green/tan/red truck sitting on a grassy field next to other trucks.

A(n) red/orange/yellow/green/blue fire hydrant with a face and bow tie drawn on it.

A(n) long red/blue/orange/gray/green train traveling through snow covered countryside.

Fig. 14. Diverse colorization results with different captions.

Two boys with 

brown hair in front 

of the pink wall.

Blue car in front of 

red house.

The golden sun 

shines on the road.

A yellow house 

under the blue sky.

Woman dressed in 

blue hat and clothes. 

Woman dressed in 

tan hat and clothes.

Woman dressed in 

purple hat and 

clothes. 

1941.  "Street corner 

in Greensboro, 

Greene County, 

Georgia."

1941. "Two sons of 

William Gaynor, 

FSA dairy farmer 

near Fairfield, 

Vermont."

1940. "House, late 

afternoon. Mystic, 

Connecticut."

1940. "Highway 

U.S. 30. Sweetwater 

County, Wyoming."

1922. "Miss Anna 

Niebel, winner of 

Tidal Basin bathing 

beach style contest."

Fig. 15. More colorization results of legacy photos.
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