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Abstract How to design proper training pairs is critical for super-
resolving real-world low-quality (LQ) images, which suffers from the
difficulties in either acquiring paired ground-truth high-quality (HQ)
images or synthesizing photo-realistic degraded LQ observations. Re-
cent works mainly focus on modeling the degradation with handcrafted
or estimated degradation parameters, which are however incapable to
model complicated real-world degradation types, resulting in limited
quality improvement. Notably, LQ face images, which may have the same
degradation process as natural images, can be robustly restored with
photo-realistic textures by exploiting their strong structural priors. This
motivates us to use the real-world LQ face images and their restored
HQ counterparts to model the complex real-world degradation (namely
ReDegNet), and then transfer it to HQ natural images to synthesize their
realistic LQ counterparts. By taking these paired HQ-LQ face images as in-
puts to explicitly predict the degradation-aware and content-independent
representations, we could control the degraded image generation, and
subsequently transfer these degradation representations from face to nat-
ural images to synthesize the degraded LQ natural images. Experiments
show that our ReDegNet can well learn the real degradation process
from face images. The restoration network trained with our synthetic
pairs performs favorably against SOTAs. More importantly, our method
provides a new way to handle the real-world complex scenarios by learning
their degradation representations from the facial portions, which can be
used to significantly improve the quality of non-facial areas. The source
code is available at https://github.com/csxmli2016/ReDegNet.

Keywords: real world degradation, blind image super-resolution

1 Introduction

It is widely known that Convolutional Neural Networks (CNNs) are proficient
in handling the data they have seen, but perform inferior on these deviating
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Figure 1: (a): A real-world LQ image. (b)∼(g): Restoration comparisons with inverse
halftone method [43], RealSR [19], Real-ESRGAN [48], BSRGAN [56], BSRGAN*
fine-tuned with halftone degradation [13], and Ourss that is specifically trained with
the synthetic pairs in (i). (h): Face restoration result by GPEN [53]. (i): Our synthetic
LQ sample with the degradation representation from (h).

from the training sets. This property makes the blind image super-resolution
networks difficult to handle the real-world LQ images which are usually corrupted
with complex and unsynthesizable degradation. However, building these pairs
of real-world LQ and HQ datasets is neither feasible nor practical, because the
real-world degradation types are too diverse and some of them are not brought by
the imaging system. Figure 1 (a) shows a real-world LQ image that is degraded
with halftone related artifacts. One can see that the synthetic LQ image (on the
top-left of (b)) by the inverse halftoning method [13] is hardly consistent with the
complex real-world degradation, which makes these types of restoration methods
(e.g., [43]) fail to generate photo-realistic result (see (b)).

To alleviate the difficulties in restoring the real-world LQ images, some works
attempt to predict the degradation parameters [16,17,19,20,34] and then handle
the LQ input with the non-blind restoration works. However, the real degradation
usually combines with various corruption types, each of which has lost its intrinsic
characteristics. This inevitably makes these methods sensitive to the prediction
errors of the degradation parameters, and consequently makes them fail to handle
the real-world LQ image (see (c) in Figure 1).

Recently, data-driven methods are suggested to design a practical degradation
model by handcrafting the complex combinations of blur, downsampling, noise
and JPEG compression with random [56] or high orders [48]. Albeit these methods
have more diverse degradation types [10, 31, 57] and show great generalization in
handling the real-world LQ images in most cases, they still fail to cover some
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complex real degradation which cannot be well synthesized (see (d) and (e) in
Figure 1). By incorporating the synthetic halftone degradation [13], BSRGAN*
has slight improvement (see (f)), but still contains obvious linearity artifacts.

In contrast, face image has specific and strong structure prior, and can be
better restored while exhibiting great generalization ability on real-world LQ
images in most cases [27, 47, 53]. Although the image is corrupted by intractable
degradation, the face restoration result is very plausible and photo-realistic (see
Figure 1 (h)). Since the face and non-face (natural) regions in an image share the
same degradation, once we have known the degradation process on face regions,
transferring it to natural HQ images would bring considerable benefits, e.g., we
can apply this degradation process on the HQ natural image to synthesize these
types of natural image pairs (see (i)) for training restoration network (see (g)).

In this paper, we make the first attempt to explore the real degradation with
ReDegNet, which contains (i) learning the real degradation from the pairs of
real-world LQ and pseudo HQ face images with DegNet, and (ii) transferring it
to HQ natural images to synthesizing their realistic LQ ones with SynNet. As for
(i), instead of taking a single LQ image to predict its degradation parameters [19],
our DegNet takes the real-world LQ and its pseudo HQ face images as input to
generate the degradation representation, which models the degradation process
of how the HQ image is degraded to the LQ one. To disentangle the image
content and degradation type, we adopt two manners, i.e., a) carefully designed
framework by predicting the degradation representation through several fully
connected layers to generate the convolution weights which can be regarded as
the styles in StyleGANs [22,23], and b) contrastive loss [46] by minimizing the
representation distance between the pairs with different content but degraded
with the same degradation parameters, and meanwhile maximizing these with
the same content but different degradation. This process is fully supervised by
the paired LQ/HQ face images. As for (ii), our SynNet synthesizes the realistic
LQ natural images with these degradation representations extracted from face
images, which can help us to learn the real-world restoration mapping. Note that
our method may perform limited on scenarios without faces. By extending the
degradation space with face images share the similar degradation, our model
would be further improved. The main contributions are summarized as follows:

– We propose the ReDegNet to explore the real degradation from face im-
ages by explicitly learning the degradation-aware and content-independent
representations which control the degraded image generation.

– We transfer these real-world degradation representations to HQ natural
images to generate their realistic LQ ones for supervised real restoration.

– We provide a new manner for handling intractable degraded images by
learning their degradation from face regions within them, which can be used
for synthesizing these types of LQ natural images for specifically fine-tuning.

– Experimental results demonstrate that our ReDegNet can well learn the
degradation representations from face images and can effectively transfer
to natural ones, contributing to the comparable performance on general
restoration and superior performance in specific scenarios against the SOTAs.
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2 Related Work

2.1 Blind Face Restoration

Different from the complex textures in natural images, the specific structure in face
images make it feasible to well handle the real-world LQ face images [5,7,8,18,24,
60]. To alleviate the sensibility for the unknown degradation, reference images or
component features are suggested for guiding the blind restoration process [27–29].
Most recently, generative face prior [22,23] based methods [4,47,53] are proposed
to improve and stabilize the restoration quality, which can robustly restore
the real-world LQ face images in most scenarios. Their great generalization on
face images inspires us to explore the possibility of extending the restoration
performance from the local region (i.e., face) to the whole image.

2.2 Degradation Estimation Based Blind Image Super-Resolution

The real-world LQ images are mainly corrupted with unknown degradation
parameters, so some works focus on estimating these degradation parameters
and then apply non-blind restoration methods to recover it. Bell-Kligler et al. [2]
firstly propose the image-specific KernelGAN to predict the blur kernels and feed
them to ZSSR [41] for non-blind restoration. Gu et al. [16] introduce iterative
kernel correction method to estimate the blur kernel which further benefits the
restoration results. Luo et al. [34] alternate the optimization of restoring HQ
images with the predicted kernel and estimating the blur kernel with the restored
results, both of which can compensate each other. Wang et al. [46] suggest a
degradation-aware super-resolution network that learn the degradation related
parameters to guide the restoration process. However, real-world LQ images
usually have high frequency noises or compression artifacts, and these methods
are sensitive with them, which brings adverse effect for parameter prediction.

2.3 Data-driven Based Blind Image Super-Resolution

The main challenge of blind image super-resolution task can be ascribed to
the lack of suitable training pairs. So a straightforward way is to collect the
real-world LQ and HQ pairs. Cai et al. [3] adjust the focal length of the digital
cameras to capture the paired LQ/HQ images on the same scene. Wei et al. [50]
build a larger dataset with a large-scale diverse benchmark by zooming the
digital cameras. Except for the cumbersome capturing process, the spatial and
brightness misalignment easily leads to uncontrollable errors. Moreover, although
these images are realistic, they are more suitable for the specific super-resolution
task that has the similar capturing scenarios. These types of collecting data
occupies very few of these complex real-world degraded images, resulting in the
failure cases when handling other real degradation, e.g., noise or compression.

To alleviate the difficulties in synthesizing real-world LQ images, recent works
tend to learn the restoration mapping with unpaired LQ and HQ images. Yuan et
al. [54] suggest a Cycle-in-Cycle network by firstly mapping the LQ input to
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noise-free space and then super-resolving it through a pre-trained super-resolution
model. Similarly, Lugmayr et al. [32] adopt the cycle consistent loss to learn
a domain distribution network to generate new LQ/HQ pairs for supervised
restoration. Fritsche et al. [12] also propose the unsupervised DSGAN model to
generate the degraded LQ images with the same characteristics as the original
ones. To constitute more realistic LQ images, Ji et al. [19] extract the blur kernels
via KernelGAN [2] and noise injection through [6, 59], which perform on HQ
images to simulate the real degradation process. Although these methods achieve
great performance in most cases, they still show limited generalization ability
in super-resolving real-world LQ images, because 1) the estimated degradation
parameters from only a single image is highly ill-posed and they are not enough
to infer how the HQ images degraded (Figure 1 (a)), and 2) the real-world LQ
images usually suffer from complex degradation, which is challenging to model
due to the lack of paired data. In contrast, our ReDegNet adopts the pairs of
real-world LQ and pseudo HQ face images to explore the real degradation process.

Another way is to extend the degradation space. Instead of the traditional
degradation process that degrades the HQ image with Gaussian blurring, followed
by the bicubic downsampling operation, and the injection of Gaussian noise and
JPEG compression, Zhang et al. [56] propose a practical degradation model
with randomly shuffled orders of these operations which tremendously cover
the diverse degradation space. Similarly, Wang et al. [48] suggest a high order
degradation model with several repeated degradation process. Although these two
methods show great generalization in handling real-world images, they are still
incapable for those images corrupted with complex degradation like the halftone
image in Figure 1 (a). Traditional methods remove these continuous noisy dots
mainly through filters [26,33,36], look-up-tables [9], dictionary learning [11], or
maximum a posteriori estimation [44]. Recent CNN-based inverse halftoning
methods [13, 43, 51,52] and even these estimation or data-driven based methods
still fail to generate photo-realistic results on these types of real-world LQ images,
which can be ascribed to the difficulties in synthesizing proper LQ images.

3 Methodology

Our ReDegNet aims to learn the real degradation from the pairs of real-world LQ
and pseudo HQ face images, and transfer it to natural ones. So it mainly contains
two sub-networks, i.e., DegNet for learning the degradation representation Ω,
and SynNet for synthesizing the LQ images with the given HQ input and Ω. With
the collected real-world LQ face images IReaL

f and their pseudo HQ ones IPseH
f ,

the learning process of DegNet (FDeg) and SynNet (FSyn) can be formulated as:

ΩRea
f = FDeg

(
IReaL
f , IPseH

f ;ΘDeg

)
, (1)

ÎLf = FSyn

(
IPseH
f , ΩRea

f ;ΘSyn

)
, (2)

where ΘDeg and ΘSyn are the learnable parameters for DegNet and SynNet.
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Figure 2: Overview of our ReDegNet. (a) The DegNet learns the degradation represen-
tation. (b) The SynNet synthesizes the LQ image with the degradation presentation Ω
from DegNet. D denotes a learned affine transform from Ω that produces a degradation
style. C represents the content features that will be degraded by D through modulated
convolution. (c) The HQ natural image together with the degradation representation
sampled from the face pairs are taken into SynNet to generate their synthetic LQ one.

After jointly end-to-end learning through degradation disentanglement, the
synthetic realistic LQ natural images can be obtained in the inference through:

ÎLn = FSyn

(
IHn , ΩRea

f ;ΘSyn

)
, (3)

where IHn and ÎLn are the HQ and the synthetic LQ natural images, respectively.
ΩRea

f can be sampled from these real degradation representations which are
extracted from the collected real-world face pairs. The whole framework and each
sub-network are illustrated in Figure 2 and will be introduced in the following.

3.1 Learning Real Degradation from Face Image

Instead of predicting the degradation related representations from only a single LQ
image [19, 46], we take the LQ and HQ pairs as input to explore the degradation
process about how the HQ image is degraded to the LQ one. The degradation
representation network (DegNet) shown in Figure 2 (a) is stacked with several
convolutional layers, each of which followed by spectral normalization [39] and
LeakyReLU activation. A fully convolutional (FC) layer is incorporated in the last
to predict the degradation representation vector Ω, which has the size of 1× 512.
This sub-network is optimized through two terms, i.e., the disentanglement loss
in Eqn. 7 and the gradient back propagated from the following SynNet.

3.2 Synthesizing the LQ Image

After obtaining the degradation representation vector Ω, the remaining problem
is about how to utilize it to control the degradation process. Inspired by the Style-
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GANs [22,23] that control the style of the generated image with one vector within
W space, we adopt the similar structure to map the degradation representation
Ω to W space through several fully convolutional (FC) layers. Then, instead of
feeding the broadcast noise in StyleGAN, the image content of our SynNet is
provided by the features of the input HQ images. Finally, with the degradation
styles D and image content C , the degraded image is reconstructed with the
modulated convolution operation (MCBlock) in which the degradation styles
serve as the convolutional weights to control the degradation process of the given
image content [23]. With several cascaded MCBlocks, the final LQ result which
is expected to have the similar degradation types with the given degradation
representation can be synthesized. Since the degradation vector Ω should be a
global representation without any spatial information, here we randomly crop
the HQ image as the input of SynNet to alleviate the spatial dependency.

To introduce different scales of textures in the training phase, we adopt the
random rotation, resampling, and cropping on face images in DegNet and SynNet,
simultaneously. The proposed SynNet combined with DegNet constitutes our
ReDegNet that can be jointly optimized in a supervised end-to-end manner.

3.3 Transferring Degradation to Natural Image

After training on face images, our ReDegNet can not only extract the real
degradation representation from pairs of face images, but also generate the
corresponding LQ image with the expected degradation styles. So as for general
restoration, we store large amounts of degradation representations that are
extracted from real-world LQ and their pseudo HQ face images, which will be
sampled to imitate the real degradation process on natural HQ images (Figure 2
(c)). Here we also resample and rotate the LQ/HQ face pairs to augment the
degradation space. Notably, our ReDegNet can be utilized in some specific
restoration, in which the degradation types are not easy to synthesize with
current degradation model. For the intractable old photos (e.g., Figure 1) or
old films, we can obtain their degradation representations with DegNet through
the pairs of LQ face region within them and its pseudo HQ result. Then the
HQ natural images can be utilized to generate the corresponding LQ image by
SynNet to synthesize these degradation types of natural training pairs, which
can be used to fine-tune the specific restoration on the whole image.

3.4 Learning Objective

Two types of loss functions are collaborated together to constrain the learning
of our ReDegNet, i.e., (i) disentanglement loss that is introduced to extract the
degradation-related representations, and (ii) reconstruction loss that is suggested
to constrain the synthetic results close to the ground-truth.
Disentanglement Loss. The degradation representations ΩRea

f learned from
face images are expected to perform on natural ones to control the degradation
styles, so it should be degradation-aware and content-independent. To achieve this
goal, we adopt contrastive learning [40,46] to minimize the distances of Ωs that
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are obtained from images with different content but have the same degradation
parameters, and meanwhile maximize these negative pairs. To synthesize the
degraded face and natural images with the same degradation parameters, we
adopt the handcrafted degradation model from BSRGAN [56] to control the
degradation process. To clarify the notations, we give a unified definition I▲▼ in
which ▲ ∈ {SynL,ReaL,PseH,H} denotes the handcrafted synthetic LQ image
with BSRGAN [56], real-world LQ image, the restored pseudo HQ image, and
real-world HQ image, respectively, ▼ ∈ {f, n} represents the face and natural
image, respectively. Denote these synthetic face and natural pairs with BSRGAN
by {IPseH

f , ISynLf } and {IHn , ISynLn }. It should be noted that ISynLf and ISynLn are

obtained from IPseH
f and IHn with the same degradation sequence and parameters.

As for these three types of pairs, i.e., real-world LQ and HQ face pairs, synthetic
LQ and HQ face pairs, as well as synthetic LQ and HQ natural pairs, their
degradation representations can be formulated as:

ΩRea
f = FDeg

(
IReaL
f , IPseH

f ;ΘDeg

)
, (4)

ΩSyn
f = FDeg

(
ISynLf , IPseH

f ;ΘDeg

)
, (5)

ΩSyn
n = FDeg

(
ISynLn , IHn ;ΘDeg

)
. (6)

Then the disentanglement loss Ldisen can be further formulated as:

Ldisen =
∥∥∥ΩSyn

f −ΩSyn
n

∥∥∥2

2
+

λ

∥ΩSyn
f −ΩRea

f ∥22 + ϵ
+

1

2

∥∥ΘDeg

∥∥2

2
, (7)

where λ is the trade-off parameter. By minimizing the distance between ΩSyn
f and

ΩSyn
n which share the same degradation process but have the different contents

(i.e., face and nature), we can constrain the extraction of degradation-aware
and content-independent representations. On the contrary, by maximizing the
distance between ΩSyn

f and ΩRea
f which have the same contents (i.e., IPseH

f ) but
are corrupted with different degradation process, the degradation representation
can be further constrained to the degradation-aware learning.
Reconstruction Loss. It mainly contains three terms, i.e., i) mean square error
loss Lmse, ii) realistic loss Lreal, and iii) degradation-consistent loss Lcons.

i) The MSE loss Lmse contains two terms and is formulated as:

Lmse=ℓmse(Î
L
f , I

ReaL
f )=

1

CHW

∥∥∥ÎLf −IReaL
f

∥∥∥2

+

4∑
i=1

0.1

CiHiWi

∥∥∥Φi(Î
L
f )−Φi(I

ReaL
f )

∥∥∥2

(8)

where ÎLf is the generated LQ face image in Eqn. 2 and IReaL
f is the collected

real-world LQ image. C∗, H∗, W∗ are the dimensions and Φi is the i-th convolution
layer of the pre-trained VGG-19 model [42]. This objective constrains the synthetic
LQ images close to the real-world LQ images in both pixel and feature space [21].

ii) The realistic loss Lreal mainly considers two types of constraints, i.e., style
loss [14] and adversarial loss [15]. The first one is computed with the Gram matrix
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on the feature spaces of VGG-19 model and can be formulated as:

Lstyle =

4∑
i=1

1

CiHiWi

∥∥∥Φi(Î
L
f )

TΦi(Î
L
f )− Φi(I

ReaL
f )TΦi(I

ReaL
f )

∥∥∥2

, (9)

in which the variants have the same definitions as these in Eqn. 8. The second
one is the widely used adversarial loss which is effective in constraining the
results within the natural manifold. In this paper, we adopt the discriminator
from SNGAN [39] by incorporating the spectral normalization behind each
convolutional layer. It is worth noting that the result ÎLf is expected to be a
LQ image and visually blur in most cases, which is difficult for discriminator to
distinguish whether it is a real LQ or fake LQ image due to the wider space of LQ
types. So instead of only taking the synthetic result into the discriminator, we take
the HQ image and their degradation representation as additional conditions [37].
The hinge version of adversarial loss [39,55] is given by:

LD=−E[min(0,−1+D(IReaL
f , IPseH

f , ΩRea
f ))]−E[min(0,−1−D(ÎLf , I

PseH
f , ΩRea

f ))] (10)

LG = −E[D(FSyn(I
PseH
f ,FDeg(I

ReaL
f , IPseH

f ;ΘDeg);ΘSyn), I
PseH
f , ΩRea

f )] . (11)

Combining the two terms together, the final realistic loss is formulated as:

Lreal = 0.1 · Lstyle + LG . (12)

iii) The third one is the degradation-consistent loss. As analyzed before, the

degradation representation ΩSyn
f and ΩSyn

n in Eqns. 5 and 6 are obtained from
the face and natural pairs that are corrupted by the same degradation process.
Therefore, switching ΩSyn

f and ΩSyn
n should have the same LQ results. Thus the

degradation-consistent loss is suggested as:

Lcons = ℓmse(FSyn(I
H
n , ΩSyn

f ;ΘSyn), I
SynL
n )+ ℓmse(FSyn(I

PseH
f , ΩSyn

n ;ΘSyn), I
SynL
f ) ,

(13)

where ℓmse is the MSE loss defined in Eqn. 8. With the constraints on the
degradation representation ΩSyn

f (ΩSyn
n ) that is extracted from face (natural)

images and performed on natural (face) ones, we can further optimize the
disentanglement learning, and benefit the training process of the SynNet.

To sum up, the final learning objective is formulated as:

L = λdisenLdisen + λmseLmse + λrealLreal + λconsLcons , (14)

where λdisen, λmse, λreal and λcons are set to 5, 1, 0.1, and 2, respectively.

4 Experiments

Since our ReDegNet is proposed to design a degradation model for synthesizing LQ
images, in this work, we mainly compare with three related works, i.e., RealSR [19],
BSRGAN [56] and Real-ESRGAN [48], in which RealSR synthesizes the LQ
image with the estimated kernel and noise from the single real-world photograph,
BSRGAN and Real-ESRGAN focus on handcrafted design of diverse degradation.
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These three methods and Ours adopt the same network (i.e., ESRGAN [49]) , so
we can fairly compare with their released models. To evaluate the effectiveness of
blind image super-resolution methods on handling the real-world LQ images, here
we analyze the performance on two types of real-world images, i.e., real-world
pairs collected by digital camera, and real-world single LQ images. As for the
quantitative evaluation, we use PSNR, SSIM, and LPIPS [58] to measure the
distance between the result and ground-truth. Since real-world single LQ images
do not have the ground-truth, we follow the competing methods [19, 48,56] and
adopt NIQE [38] to evaluate the non-reference image quality.

4.1 Dataset and Implementation Details

We collect real-world LQ face images from Internet, and then adopt GPEN [53]
to obtain their pseudo HQ counterparts. These images cover diverse degradation
types, from slightness to severeness, oldness to present, etc. Among them, 10,000
images are used for training, 1,000 images for validating, and the remaining 5,000
images for testing. Except these collected images, we also introduce the synthetic
LQ face images from FFHQ [22] with common degradation, e.g., blur, noise, JPEG
compression, and downsampling operation, etc, to improve the generalization
ability. During the inference, we conduct the degradation representation pool
{ΩReaL

f }N from these face pairs, which will be sampled to constitute the natural
pairs for training our general restoration network (i.e., F2N-ESRGAN).

As for the natural image, we follow BSRGAN [56], and adopt DIV2K [1],
Flick2K [30,45] and FFHQ [22] for training our ReDegNet and F2N-ESRGAN.
Adam optimizer [25] with β1 = 0.5 and β2 = 0.999 is adopted to train ReDegNet
and F2N-ESRGAN. The initial learning rate is set to 2× 10−4 and will decrease
by 0.5 when the MSE loss Lmse on the validation set tends to be stable. All the
experiments are implemented on a PC server with 4 Tesla V100 GPUs.

4.2 Quantitative Comparison

Table 1 lists the quantitative results. One can see that (i) as for these real-world
pairs (RealSR Canon and Nikon [3], and DRealSR [50]), although the PSNR and
SSIM of Ours is comparable against others, the LPIPS of Ours obtains the best
performance, which indicates that our results are more consistent with human
perception [58]. The best LPIPS of Ours in turn validates the effectiveness of our
ReDegNet in synthesizing the realistic training pairs. (ii) As for the non-reference
image quality metric, we collect two groups of real-world images, i.e., RealSRSet
proposed in BSRGAN [56], and RealLQSet that contains LQ images collected
from Internet and LQ frames extracted from 480P videos. We can see that results
of Ours are better than others in most cases, but inferior to RealSR [19] in
RealSRSet [56]. We analyze that the RealLQSet (1,000 images) covers more
types of common real-world LQ images than RealSRSet (only 20 images), which
indicates RealLQSet is more suitable in evaluating the performance of super-
resolving the real-world LQ images. The better NIQE of Ours may be attributed
to the usage of degradation that are learned from real-world LQ face images.
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Table 1: Quantitative comparison on two types of real-world LQ images.
Real-world Pairs Real-world LQ

RealSR-Canon RealSR-Nikon DRealSR RealSRSet RealLQSetMethods

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ NIQE↓ NIQE↓

RealSR 25.58 .723 .458 25.49 .693 .459 27.69 .759 .438 4.82 5.62

BSRGAN 25.61 .768 .363 24.51 .711 .391 26.64 .744 .380 5.60 5.36

Real-ESRGAN 24.95 .768 .366 24.50 .716 .388 26.57 .753 .374 5.75 5.24

Ours 25.57 .765 .362 25.43 .716 .385 26.91 .758 .373 4.85 4.93

Ours (-D) 24.63 .749 .463 24.35 .684 .460 26.32 .740 .425 6.45 6.27

Ours (U ) 25.05 .752 .428 24.72 .708 .421 26.35 .741 .404 5.81 5.93

(a) Real-world LQ Image (b) StructureAware (c) RealSR

(g) Ours (i) Our synthetic natural pairs

(h) Face restoration by GPEN

(e) BSRGAN

(d) Real-ESRGAN

(f) BSRGAN* 

OursRealESRGANBSRGANRealSRReal-world Input

Figure 3: Visual comparison of these competing methods on real-world LQ images.

4.3 Visual Comparison on Real-world LQ Images

Except the quantitative metrics, visual comparison appears to be critically
important in evaluating the restoration performance, especially for these real-
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Figure 4: Restoration results on real-world LQ image. Close-up on the right bottom of
(a) is the face restoration result by GPEN [53]. BSRGAN* denotes the official BSRGAN
model fine-tuned with the incorporation of halftone degradation [13]. Ourss represents
our general model (Ours) that is specifically fine-tuned with the synthetic natural pairs
with the degradation representation from the face region. Best view it by zooming in.

world LQ images. In this paper, we select these real-world LQ images from three
types of datasets, i.e., RealSRSet from BSRGAN [56], RealSR dataset [3], and
the collected real-world LQ images from our RealLQSet. Visual results of the
competing methods are shown in Figure 3. One can see that results of Ours are
much clearer than others, not only in the smooth regions (1st row), but also in
these with rich and complex textures (2∼4th rows). Due to the limited ability
in predicting the kernel and noise from the real-world LQ images, RealSR [19]
fails to generate plausible and photo-realistic textures when handling the input
with complex degradation. Although BSRGAN [56] and Real-ESRGAN [48]
show great generalization due to the wider handcrafted degradation spaces,
our F2N-ESRGAN performs comparable against them with these degradation
representations that are extracted from the real-world LQ face images, which
indicates the effectiveness of our method in synthesizing the photo-realistic LQ
images, and in turn contributes to the better restoration performance.

4.4 Fine-tuning for Specific Restoration

Except the general super-resolution task mentioned above, our method can also
fine-tune the restoration model on specific scenarios which have face images
in them. Figures 1 and 4 show the specific cases. We can observe that (1)
although they are similar to the halftone degradation, the restoration result by
the inverse halftone method [43] can not well handle it (see (b)) due to the complex
degradation that these real-world LQ images usually suffer from. (2) The general
restoration methods, i.e., RealSR [19], BSRGAN [56], and Real-ESRGAN [48]
also fail to generate plausible results on these unsynthesizable degradation (see
(c∼e)), while Ours perform favorable but still contain obvious artifacts (see
(g)). (3) By fine-tuning BSRGAN with the synthetic halftone degradation [13],
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Figure 5: (a) The t-SNE results of four groups degradation with only blur, downsampling,
noise and JPEG compression. (b) The t-SNE results of the synthetic degradation by
the competing methods. (c) Restoration comparison of different variants.

BSRGAN* has slight improvement in reducing the artifacts, but still can not
generate photo-realistic structures (see (f)). (4) By restoring the face region with
GPEN [53] and synthesizing the similar degradation types on natural images
(see our suppl.), results of Ourss are much better than others, which indicates
the effectiveness of our method in learning the degradation from face images and
transferring to natural ones. Compared with BSRGAN and Real-ESRGAN, our
method can not only handle the general restoration with limited real degradation,
but also fine-tune the model for some specific scenarios that have face images,
which are common in the consumer photography and old photos or films.

4.5 Ablation Study

Firstly, to illustrate the degradation extraction ability of our DegNet, we introduce
t-SNE [35] to visualize the degradation representation Ω for different degradation
types. To this end, we generate four groups of LQ face pairs by separately
degrading 5,000 HQ test images with Gaussian blurring, downsampling, Gaussian
noise and JPEG compression. Then DegNet is utilized to extract their degradation
representations. The visualization of each group mapping to 2D space by t-SNE
is shown in Figure 5 (a). We can observe that these four groups of degradation
representations are embedded into four clusters completely, which indicates that
our DegNet can well capture and distinguish the different degradation types.

Secondly, we explore the degradation space of these competing methods.
With the 5,000 real-world test LQ and HQ face pairs, we synthesize the LQ
images by utilizing the degradation models of RealSR [19], BSRGAN [56], Real-
ESRGAN [48] and our ReDegNet on the pseudo HQ images. Among them, the
kernel and noise of RealSR are extracted from the real-world images. BSRGAN
and Real-ESRGAN are used with their default settings from their released
models. As for ours, we randomly sample from the degradation representation
pool {ΩReaL

f }N via SynNet to generate the LQ images. Note that {ΩReaL
f }N

have no overlap with the 5,000 test pairs. The visualization of the degradation
representations of these five groups, i.e., RealSR, BSRGAN, Real-ESRGAN, Ours
and the real-world LQ/HQ pairs, is shown in Figure 5 (b). One can see that our
synthetic LQ images are more consistent with the real-world LQ ones than the
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competing methods, indicating the effectiveness of our method in extracting the
degradation from real pairs of face images. Albeit BSRGAN and Real-ESRGAN
have more diversities due to the random/high orders and handcrafted degradation,
only few LQ images are similar to the real-world LQ ones within 5,000 pairs.

Finally, to evaluate the necessities of the disentanglement loss and our pairs of
LQ and HQ face images, we design two variants, i.e., Ours (U) by using unpaired
data which feeds only the LQ images into DegNet and random HQ images into
SynNet, respectively, and adopts the discriminator to distinguish whether the
result has the similar degradation with the LQ input or not, and Ours (-D) by
removing the disentanglement loss. The comparisons on real-world LQ images
are shown in Table 1 and Figure 5 (c). We can see that compared with Ours (U),
results of Ours are clearer and more photo-realistic, indicating the effectiveness of
our supervised manner in predicting the real degradation from the pairs of face
images. Besides, by removing the disentanglement loss, results of Ours (-D) easily
have distorted structures and obvious artifacts, which may be caused by the
inaccurate degradation representation that may contain the face related content.

4.6 Limitations

This work is intuitively motivated by the observation that the face region usually
shares the similar degradation with the non-face region. However, the background
is sometimes out of the depth of field, which easily has the inconsistent degradation
with face region, thereby bring limited benefits for the specific restoration. Besides,
our general restoration model performs not obviously superior to the competing
methods, especially on these camera captured test sets in Table 1. It is better to
collect face images under the similar scenarios to augment the degradation space.

5 Conclusion

In this work, we made the first attempt to model the real degradation from
the real-world LQ face images and their pseudo HQ counterparts, and transfer
these real degradation processes to HQ natural images by disentangling the
degradation-aware and content-independent representations. With the synthetic
natural image pairs generated by our ReDegNet, the trained blind image super-
resolution models (i.e., F2N-ESRGAN) demonstrated competitive performance
against SOTA methods, especially on real-world LQ images. Our method provided
a new solution to synthesize more realistic LQ natural images with the degradation
representation that are extracted from the facial regions within them, which
are beneficial for restoring the details of non-facial regions. Experiments showed
that our ReDegNet can well learn the real degradation from face images, and
can effectively generate the photo-realistic LQ natural ones, thereby leading to
promising performance in general and specific restoration.
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