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Abstract. Most image denoising networks apply a single set of static
convolutional kernels across the entire input image. This is sub-optimal
for natural images, as they often consist of heterogeneous visual pat-
terns. Dynamic convolution tries to address this issue by using per-pixel
convolution kernels, but this greatly increases computational cost. In
this work, we present Malleable Convolution (MalleConv), which per-
forms spatial-varying processing with minimal computational overhead.
MalleConv uses a smaller set of spatially-varying convolution kernels,
a compromise between static and per-pixel convolution kernels. These
spatially-varying kernels are produced by an efficient predictor network
running on a downsampled input, making them much more efficient to
compute than per-pixel kernels produced by a full-resolution image, and
also enlarging the network’s receptive field compared with static ker-
nels. These kernels are then jointly upsampled and applied to a full-
resolution feature map through an efficient on-the-fly slicing operator
with minimum memory overhead. To demonstrate the effectiveness of
MalleConv, we use it to build an efficient denoising network we call
MalleNet. MalleNet achieves high-quality results without very deep
architectures, making it 8.9× faster than the best performing denois-
ing algorithms while achieving similar visual quality. We also show that
a single MalleConv layer added to a standard convolution-based back-
bone can significantly reduce the computational cost or boost image
quality at a similar cost. More information are on our project page:
https://yifanjiang.net/MalleConv.html

Keywords: Image Denoising, Dynamic Kernel, Efficiency

1 Introduction

Image denoising is a fundamental problem to computational photography and
computer vision. Recent advances in deep learning have sparked significant in-
terest in learning an end-to-end mapping directly from corrupted observations
to the unobserved clean signal, without an explicit model of signal corruptions.
These networks appear to learn a prior over the appearance of “ground truth”

⋆ This work was performed while Yifan Jiang worked at Google.
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Fig. 1. Local smoothness and global variance in natural images. Our proposed
MalleConv layer applies spatially-varying filters for features in different contexts and
adopt similar filters in areas that are locally smooth, thus balancing the trade-off
between global variance and local smoothness.

noise-free images in addition to the statistical properties of the noise present in
the inputs.

The performance of denoising networks has consistently been improved with
deeper and wider layers, as they can extract richer representations and also
increase the receptive field. However, deeper and wider layers also significantly
amplify computational costs and the difficulty of optimization. One hurdle is
that most of neural architectures only apply a single fixed set of convolutional
kernels over the entire input, exploiting spatial equivariance for computational
efficiency. However, natural images often contain spatially heterogeneous visual
patterns, depriving the convolution of the ability to adapt to globally varying
features.

One recent effort addresses this issue is a kernel prediction network (or
“hypernetwork”) [5,25,29,45,57,61], which generates spatially-varying kernels at
each pixel location. Although applying per-pixel kernels increases representa-
tional power, it also greatly increases computational cost, as the number of
kernels grows with the image resolution. This makes it particularly challenging
for mobile cellphone cameras, which normally have about 12 megapixels, and
very limited compute resources and power budget.

To achieve spatial-varying processing while maintaining low computational
cost, we propose an efficient variant of spatially-varying kernels, dubbed Mal-
leable Convolution (MalleConv). We draw inspiration from the trade-off be-
tween local smoothness and global spatial heterogeneity. Fundamentally, natural
images contain spatially-varying patterns from a “global” perspective, which mo-
tivates the popularity of dynamic filters [25,29] and self-attention modules [38,56],
but image content only changes slowly in a “local” neighborhood. Therefore, nat-
ural image patches tend to redundantly recur many times inside the image, both
within the same scale and across different scales [48,20]. Natural image textures
are also commonly represented as a fractal set with self-similarity at all scales
[32]. Examples in Fig. 1 also illustrate this phenomenon. The golden ball held by
the man contains different patterns compared to the stone in the background,
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Fig. 2. Comparing MalleConv with static filter and other dynamic filters. (a)
Standard convolution with a static kernel. (b) Generate dynamic filters using a Hyper-
Network [25,29]. (c) Generate dynamic filters using a channel-to-space operation [36].
(d) Our Malleable convolution.

but the texture is locally consistent within a region of stone. Therefore, those
similar content can share the same set of kernels to save compute.

Based on this observation, we proposed MalleConv, which scales per-pixel
dynamic filter approach to a larger region. Specifically, unlike dynamic filters
which take full-resolution input and generate full-resolution kernels, MalleConv
only processes a downsampled representation, outputting location-specific dy-
namic filters at a much smaller spatial resolution compared with the origi-
nal feature map (Fig. 2(d)). These kernels are later applied to the full-resolution
feature map using a “slicing” strategy, which fuses on-the-fly bilinear interpola-
tion and convolution into a single operator. This design has several advantages.
First, comparing to the hypernetwork used in dynamic filters, our predictor net-
work only takes a low-resolution feature map as input to keep it light-weight.
Second, full resolution per-pixel kernels are calculated and applied in the same
operation, without requiring additional memory I/O for storing and retrieving
the high resolution kernel map. Together, these significantly reduce computa-
tional overhead compared to full-resolution dynamic filters. Moreover, by taking
a downsampled image as input, the predictor network has a large receptive field
without very deep structure.

Comprehensive experiments are conducted to demonstrate the effectiveness
of the proposed method. We evaluate MalleNet on public synthetic and real
image benchmarks (Synthetic: CBSD68, Kodak24, McMaster; Real: SIDD and
DND). In addition, we conduct ablation study by injecting MalleConv into ex-
isting backbones, including DnCNN [67], UNet, and RDN [72], where the re-
sults show that MalleConv achives better quality-efficiency trade-off compared
to other dynamic kernels.

In summary, our contributions are as follows:

– We propose Malleable Convolution (MalleConv), a new spatially-varying ker-
nel layer that serves as a powerful variant of standard convolution. Malle-
Conv largely benefits from an efficient predictor network, which incurs min-
imum additional cost to achieve a spatial-varying processing.
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– We conduct a comprehensive ablation study by inserting MalleConv into var-
ious popular backbone architectures (including DnCNN, UNet, and RDN),
where we show MalleConv can reduce runtime by up to 20× with similar
visual quality.

– We compare MalleConv with previous spatially-varying kernel architectures
including HyperNetworks [25] and Involution [36]. MalleConv demonstrates
a better quality-efficiency trade-off.

– We further design a new MalleNet architecture using the proposed Malle-
Conv block, achieving faster performance and higher quality on both syn-
thetic and real-world denoising benchmarks.

2 Related Work

2.1 Image Denoising

Traditional image denoising algorithms make use of information in local pixel
neighborhoods [47,51] or sparse image prior [3,16,43,6,18,13]. Recently, deep
convolutional networks have demonstrated success in many image restoration
tasks [15,40,72,54,34,35,50,37,62,30,59,11,31]. For image denoising specifically,
Burger et al. [7] proposed a plain multi-layer perception model that achieves
comparable performance to BM3D. Chen et al. [10] proposed a trainable nonlin-
ear reaction diffusion model that learns to remove additive white gaussian noise
(AWGN) by unfolding a fixed number of inference steps. Many subsequent works
further improved upon it by using more elaborate neural network architecture
designs, including residual learning [67], dense networks [72], non-local mod-
ules [71,8,38], dilated convolutions [46], and more [12,65,64,9]. However, many
of these approaches use heavy network architectures that are often impractical
for mobile use cases. To tackle this issue, several recent works focus on fast im-
age denoising, by either introducing a self-guidance network [22] or increasing
the nonlinear model capacity [21]. In contrast, our approach relies on spatially-
varying kernels, where parameters are dynamically generated by an efficient
prediction network.

2.2 Dynamic Filters and Spatially Varying Kernels

Convolutional neural networks producing dynamic kernels have been widely
studied for a variety of applications. The pioneering works [29,25] adopt a parameter-
generating network to produce location-specific filters. These works directly pro-
duce spatially-varying weights for the whole convolutional layer, substantially in-
creasing the latency and computational cost of their approaches. Wang et al. [57]
designed a feature upsampling module (CARAFE) that generates kernels and re-
assembling features inside a predefined nearby region. However, CARAFE is de-
signed as a feature upsampling operator instead of a variant of convolution. The
context-gated convolution [41,73] adopts a gated module and channel/spatial
interaction module to generate modified convolutional kernels. Although their
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Fig. 3. Main architecture of MalleNet. MalleNet takes a 4-level image pyramid
as input. Each layer consists of several Inverted Bottleneck Blocks with a MalleConv
block inserted in between. Bottom middle shows the structure of MalleConv block,
which consists of a small prediction network and a on-the-fly slicing operator. Bottom
right shows details of on-the-fly slicing operator. For each input feature (red rectangle),
four neighboring kernels are bilinearly combined and applied to that feature to generate
the corresponding output feature.

filter weights are produced dynamically, they apply the same filter at differ-
ent spatial locations. Another line of work [36] avoids using a hypernetwork by
employing a channel-to-space rearrangement to generate location-specific filters.
Without the help of a hypernetwork, this approach can not capture the local
information and image context. While previously described approaches mainly
adopt dynamic filters inside multiple convolutional layers of a deep network, a
different line of work[5] proposed to use a standard convolutional neural network
to predict denoising kernels that are applied directly to the input to produce the
target image. Mildenhall et al. [45] extended this approach to burst denoising
by predicting a separate set of weights for each image in a temporal sequence.
HDRNet [19] uses a deep neural network to process the low-resolution input and
applies the produced spatially-varying affine matrix to the full-resolution input
by slicing a predicted bilateral grid. In stead of processing the input image, our
proposed Malleable Convolution applies an efficient predictor network to process
a downsampled feature map, then constructs a deep spatially-varying network
layer-by-layer.

3 Method

3.1 Preliminaries

A standard convolutional layer applies a kernel with weights W ∈ RCin×Cout×K2

to an input feature map sampled from a 2D tensor X ∈ RCin×H×W . Here H,W
are the height and width of the feature map, Cin, Cout denote the numbers of
input and output channels, and K is the kernel size. This basic design struggles
to capture global context information and cannot adapt to different regions of
natural images that contain spatially heterogeneous patterns. Although previ-
ous works address this issue by adopting per-pixel dynamic filters [25,29,45] or
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generating spatial-agnostic filters via a channel-to-space permutation [36], their
approaches either require large memory footprint or do not capture context in-
formation.

3.2 Malleable Convolution with Efficient Predictor Network

To overcome the aforementioned drawbacks, we propose a new operation, dubbed
Malleable Convolution (MalleConv). MalleConv is equipped with an light-weight
predictor network that significantly reduces the memory cost and runtime la-
tency of previous dynamic kernel prediction [25,29,45]. The proposed predictor

network first downsamples the input feature map X to X
′ ∈ RH

4 ×W
4 ×C through

a 4×4 average pooling. After that, we build a light-weight predictor network con-
sists of multiple ResNet blocks [27] and max pooling layers [26] (see supplemen-
tary materials for detailed architecture). The predictor network outputs a feature

map Y ∈ RH
8 ×W

8 ×C
′

, where C
′
= K2 × C. To formulate a spatially-varying fil-

ter, the learned representation Y is reshaped to a list of filters {Wij} ∈ RK2×C ,
where i ∈ {1, 2, ..., H

8 }, j ∈ {1, 2, ..., W
8 }. Each kernel in Y only has C chan-

nels, not Cin×Cout, as we use depth-wise convolution [28] to further reduce the
number of parameters. Finally, we upsample the learned spatially-varying filters
{Wij} through bilinear interpolation to obtain per-pixel filters {W ′

ij} ∈ RK2×C ,
where i ∈ {1, 2, ...,H}, j ∈ {1, 2, ...,W}, and independently apply them to the
corresponding input channels.

3.3 Efficient On-the-fly Slicing

A naive way to implement malleable convolution is to first upsample the low-
resolution filters to full-resolution using bilinear interpolation and then apply
them to the full-resolution feature map. However, this introduces a large memory
footprint since the high-resolution kernels are being precomputed and stored
before their application.

To mitigate the memory issue, we combine these two steps into a on-the-fly
slicing operator. It takes in a high-resolution feature map X ∈ RH×W×C and
low-resolution kernel maps {Wij} ∈ RK2×C as input. The result of the on-the-fly
slicing operator is a new feature map Z with the same resolution as X. For each
pixel location, we first calculate the bilinear interpolated kernel weights from
four neighboring kernels as (also illustrated in bottom right of Fig. 3)

W
′

x,y =
∑

i,j∈N(x,y)

τ(rxx− i)τ(ryy − j)W ′
i,j , (1)

where τ is the linear interpolation operator τ(a) = max(1−|a|, 0), rx and ry are
the width and height ratios of the low-resolution filters w.r.t. the full resolution
input feature map, and N(x, y) is the four-neighborhood. Bias term b

′

x,y is sliced
in the similar way. The output feature Z is then calculated as:

Zx,y(c) = W
′

x,y(c) ·Xx,y(c) + b
′

x,y(c), (2)
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Method Latency/(ms) Flops/(G)
CBSD68 Kodak24 McMaster

σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

BM3D [13] 41.56 - 33.52 30.71 27.38 34.28 32.15 28.46 34.06 31.66 28.51
FFDNet [69] - 7.95 33.87 31.21 27.96 34.63 32.13 28.98 34.66 32.35 29.18
MalleNet-S 4.62 2.93 33.90 33.22 27.97 34.66 32.16 29.00 34.68 32.35 29.20

RPCNN [60] 95.11 - - 31.24 28.06 - 32.34 29.25 - 32.33 29.33
DSNet [46] - - 33.91 31.28 28.05 34.63 32.16 29.05 34.67 32.40 29.28
IRCNN [68] - 12.18 33.86 31.16 27.86 34.69 32.18 28.93 34.58 32.18 28.91
DnCNN [67] 21.69 68.15 33.90 31.24 27.95 34.60 32.14 28.95 33.45 31.52 28.62
DnCNN* [67] 21.69 68.15 34.02 31.34 28.11 34.62 32.18 29.11 35.18 32.73 29.49
MalleNet-M 16.69 9.36 34.15 31.50 28.27 34.82 32.41 29.35 35.53 33.12 29.96

BRDNet [55] - - 34.10 31.43 28.16 34.88 32.41 29.22 35.08 32.75 29.52
DRUNet [66] - 102.91 34.30 31.69 28.51 35.31 32.89 29.86 35.40 33.14 30.08
MalleNet-L 32.34 33.47 34.32 31.71 28.52 34.93 32.58 29.50 35.65 33.26 30.12

RNAN [71] - 774.67 - - 28.27 - - 29.58 - - 29.72
RDN [72] 263.03 2001.86 - - 28.31 - - 29.66 - - -
RDN* [72] 263.03 2001.86 34.29 31.69 28.37 34.89 32.52 29.68 35.55 33.16 29.92
IPT [8] - 938.66 - - 28.39 - - 29.64 - - 29.98
SwinIR [38] 780.61 788.10 34.42 31.78 28.56 35.34 32.89 29.79 35.61 33/20 30.22
MalleNet-XL 87.55 181.89 34.54 31.86 28.62 35.07 32.67 29.61 35.72 33.28 30.23

Table 1. Comparing MalleNet with the state-of-the-art methods on three
common benchmarks. We try our best to use the official implementation provided
by the authors to calculate FLOPs and latency. “*” denotes that the original methods
were trained with small-scale dataset and we retrain these networks with more training
data and larger patch size, for fair comparison.

where c is the channel index. Note that the sliced weight W
′
and bias b

′
are

calculate on-the-fly without additional memory cost. We discuss more about the
specific memory consumption in Sec. 4.4.

3.4 Malleable Network

As the goal of this work is to design an ultra-fast denoiser, current state-of-
the-art algorithms such as the residual dense network [72] or transformer-based
architectures [8,38] are sub-optimal to build an efficient backbone. Inspired by
some recent pyramid-based approaches [22,39,64], we design a new backbone
integrating the proposed malleable convolution, dubbed MalleNet.

MalleNet first builds a four-level pyramid using 2× space-to-channel shuffle
operations [53]. This allows us to extract multi-scale representations and in-
creases the network’s receptive field. In each stage, we stack several Inverted
Bottleneck Blocks [52] with a fixed ratio and insert one K ×K Malleable Con-
volution in-between to extract heterogeneous representations. At the end of the
bottom stage, we upsample the feature map and concatenate it with the input
of its upper stage. In the top stage, the representation extracted from different
pyramids are aggregated to produce the final output. Compared to conventional
encoder-decoder style architectures, the pyramid-based architecture reuses the
extracted representation from each scale and thus can achieve faster inference
speed. The whole network is shown in Fig. 3.
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Fig. 4. Comparison between MalleConv and other dynamic filters in terms of runtime
latency and PSNR value.
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Fig. 5. Visual comparison between MalleNet and previous approaches. More visual
results are shown in the supplementary.

4 Experiments

We mainly evaluate the proposed module on the Additive White Gaussian Noise
(AWGN) removal task. Following previous work [66], we construct a training
dataset with 400 examples from the Berkeley Segmentation Dataset (BSD) [44],
4,744 examples from the Waterloo Exploration Database [42], 900 images from
the DIV2K dataset [2], and 2,750 images from the Flick2K dataset [40]. We
adopt 160×160 training patch size, which we augment through random cropping,
rotations, and flipping. Other networks (e.g., IPT [8] and SwinIR [38]) are not
able to be benefited from larger patch size, due to the heavy memory cost. We
empirically choose kernels size 1×1 for MalleConv on AWGN removal tasks and
kernel size 3× 3 on real-world benchmarks, as that is observed to reach the best
PSNR-to-Complexity trade-off. We adopt the Adam optimizer [33] with a batch
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Fig. 6. Visual results by inserting MalleConv into a fast variant of DnCNN, with σ =
50.

size of 16 and a cosine learning rate scheduler. The initial learning rate is set
to 0.001. The full training process takes 2.2M iterations. We adopt 3 common
datasets as our testing set: CBSD68, kodak24 [17], and McMaster [70].

All of our experiments are conducted on 8 Nvidia V100 GPUs using the
Tensorflow-2.6 platform. The FLOPs (floating point operations) and runtime
are calculated on a 256 × 256 resolution RGB patches. We benchmar the in-
ference speed on a single Nvidia P6000 GPU platform by setting batch size
set to the maximum available number. For PyTorch-based implementations, we
report the average latency of a single 256 × 256 × 3 input collected from 500
runs. For Tensorflow-based implementations, we report the latency time using
the Tensorflow official profiler3.

4.1 Comparing MalleConv with Other Dyanmic Kernels

To demonstrate the efficiency and effectiveness of the proposed MalleConv, we
compare specific computational cost and performance of each individual network
equipped with MalleConv and other dynamic filters, e.g., HyperNetwork [25] and
Involution [36]. We adopt DnCNN [67] as our main backbone and replace the
middle layer of DnCNN with a single dynamic filter operator. We evaluate three
different DnCNN backbones with channel={16, 32, 64}. In each one, the number
(depth) of DnCNN backbone are growing from 3, 6, 9, to 15. As shown in Fig. 4,
MalleConv achieves the best performance-efficiency trade-off by significantly im-
proving the PSNR with minimum additional runtime latency.

4.2 Comparing with State-of-the-Art Methods

To fairly compare the runtime speed between MalleNet and other baselines, we
train 4 versions of MalleNet: -S, -M, -L, and -XL by increasing the number

3 https://www.tensorflow.org/guide/profiler
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Depth Metrics
AvgPooling Size

0 2 4 8

D=3
Latency/(ms) 13.19 7.08 5.62 5.18
FLOPs/(G) 43.96 18.17 11.71 10.10
PSNR/(dB) 27.91 28.15 28.07 28.01

D=6
Latency/(ms) 17.39 11.28 9.85 9.43
FLOPs/(G) 62.05 36.26 29.81 28.19
PSNR/(dB) 28.19 28.24 28.24 28.18

D=15
Latency/(ms) 30.09 23.98 22.53 22.09
FLOPs/(G) 98.24 72.44 66.00 64.39
PSNR/(dB) 28.25 28.28 28.31 28.28

Table 2. Ablation study on the size of AvgPooling layer in MalleConv Operator. PSNR
results are reported on the CBSD68 test set with σ = 50.

of channels from 16, 32, 64 to 144. We divide evaluated approaches into four
categories according to their performance and runtime speed. As shown in Table
1, on these four categories, MalleNet achieves the best efficiency-performance
trade-off and reaches state-of-the-art results among two of our main benchmark
test sets. We show the PSNR-to-Complexity trade-off of each method in Fig. 12
left.

4.3 MalleConv Layer with Alternative Backbones

To further demonstrate that the proposed Malleable Convolution can benefit
wide variety of network architectures, we perform ablation studies by insert-
ing MalleConv into existing well-known backbones as a plug-in operator. Here
we choose three popular backbones as our main testbeds. Since most of origi-
nal network structures are too heavy for edge devices, we also manually build
a few cheaper variants by controlling the depth and channel variables. Using
DnCNN as an example, the vanilla DnCNN architecture contains 15 layers with
64 channels. We construct its faster version by setting the depth = {3, 6, 9, 15}
and channel = {16, 32, 64}, respectively, and obtain the architecture series of
DnCNN with 3× 4 = 12 variants.

Afterwards, we construct a number of better performing variants of these
architecture series, by replacing one standard convolution with a single
1×1 MalleConv operator. We replace the middle layer of the network with a
MalleConv block (detailed architectures are shown in the supplementary mate-
rial). We conduct experiments on CBSD69 dataset and train these architectures
using the same training recipes. As shown in Fig. 7, 8, and 9, a single MalleConv
block brings significant improvement to all three backbones.

4.4 Visual Comparison and Interpretation

We first compare our best architecture MalleNet-XL with previous state-of-the-
art approaches [67,72,38,38], as shown in Fig. 5. The examples produced by
MalleNet preserve rich details and impressive textures while saving up to ×8.91
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Method Latency FLOPs/(G)
SIDD DND

PSNR SSIM PSNR SSIM

DnCNN [67] 21.69 68.15 23.66 0.583 32.43 0.79
BM3D [13] 41.56 - 25.78 0.685 34.51 0.851
WNNM [23] - - 25.78 0.809 34.67 0.865
CBDNet [24] - - 30.78 0.754 38.06 0.942
RIDNet [4] 98.13 - 38.71 0.914 39.26 0.953
VDN [63] - - 39.28 0.909 39.38 0.952
ACDA [58] - - 39.32 0.912 - -
MPRNet [65] - 573.50 39.71 0.958 39.80 0.954
NBNet [12] 37.44 88.70 39.75 0.973 39.89 0.955
MIRNet [64] 192.61 787.04 39.72 0.959 39.88 0.956
HINet [9] 32.83 170.71 39.99 0.958 - -
MalleNet-R 13.58 29.11 39.56 0.941 39.21 0.949

Table 3. Comparing MalleNet with the State-of-the-art methods on real-
world benchmark SIDD and DND. We try our best to use the official implemen-
tation provided by the authors to calculate the FLOPs cost and runtime speed.

inference time compared to the best baseline, further demonstrating the effec-
tiveness of our approach. Moreover, in the “ultra-fast” setting, we decrease the
depth of DnCNN from 15 to 3 to obtain a much faster variant of DnCNN archi-
tecture. However, the image quality also degrades as shown in the bottom-left
of Fig. 6. In contrast, when replacing the middle layer of DnCNN with a single
1 × 1 MalleConv operator (DnCNN w/ MalleConv), it uses slightly more com-
putational time, but achieves significantly better visual quality, as shown in the
bottom-right of Fig. 6.

Furthermore, to illustrate how spatially-varying kernels in MalleConv cap-
ture heterogeneous visual patterns, we replace the spatially varying kernels in
MalleNet with one selected kernel and apply it to the entire image. Fig. 11 com-
pares the default output of MalleNet (column 2) with the one that applies a
selected kernel (columns 3 and 4). When a kernel generated from a sky region
(column 3) is applied, the network is observed to denoise the rest of the image
as if they are the sky. Similarly, using a kernel from a snowy-mountain patch
will generate output that looks like snowy mountain (column 4). By combining
kernels that are dedicated to different local image statistics together, MalleConv
can better model the heterogeneous spatial patterns and yield better results.

4.5 Analysis of Runtime Latency and Memory Cost

In Fig. 10, we compare the memory cost of each operator during the training
process. We conduct our testbed on three different modules: 1) The 1× 1 Mal-
leConv with input and output channel to be 16, 32, 64. MalleConv generates
smaller-size of dynamic kernels and then applies it back to the full-resolution
feature using on-the-fly slicing operator; 2) We directly upsample the generated
dynamic kernel via an 8× bilinear upsampling operator, to match the resolution
of input features; 3) We remove the downsampling and maxpooling layers in the
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proposed efficient prediction network, thus it will generate per-pixel dynamic
kernels and apply it to the feature map. As shown in Fig. 10, the memory cost
of MalleConv is much smaller than other two counterparts, since it only needs
to predict a smaller-size of filters compared to the per-pixel kernel prediction
methods, and does not store the intermediate feature map of upsampled kernels
compared to the bilinear interpolation operator.

0

5000

10000

15000

20000

channel=16 channel=32 channel=64

On-the-fly Bilinear Per-pixel Kernel
Memory/(MB)

Fig. 10. cost comparison between the pro-
posed method and per-pixel kernel predic-
tion approaches (HyperNetwork).

Moreover, we conduct the ablation
study on the downsampling ratio of
the proposed efficient predictor net-
work. Similar to the aforementioned
setting, we set our testbed on DnCNN
approach and examine three differ-
ent architectures by setting depth =
{3, 6, 15}. We evaluate the runtime
speed, FLOPs cost, and PSNR value
of four variants with the size of the
AvgPooling layer equal to {0, 2, 4,
8}. As shown in Table 2, by process-
ing a 4× downsampled feature map,
our proposed efficient predictor net-
work achieves a “win-win” in terms of
both performance and efficiency. This
demonstrates that applying the pre-
diction network on a lower resolution
feature map can not only improve the
performance, due to a larger receptive field, but also save computations

4.6 Evaluation on Real Sensor Noise

To further demonstrate the generalization ability of MalleNet, we evaluate our
approaches to real sensor noise. Similar to previous works [12,64], we adopt
Smartphone Image Denoising Dataset (SIDD) [1] and Darmstadt Noise Dataset
(DND) [49] as main benchmarks. We use training data from SIDD as our train-
ing set and evaluate our method on both two test sets. In the training process,
We adopt Adam Optimizer with a batch size of 128, the weight decay is set to
0.03, and the learning rate is set to 2e-4. We randomly crop 256 × 256 patches
and apply random rotation and flipping. We train a real denoiser MalleNet-R,
by slightly modifing the channel/depth of MalleNet-M architecture and replace
Inverse Bottleneck Block with standard residual block (see supplementary mate-
rials for details). As shown in Table 3, MalleNet-R achieves lower latency (13.58
ms) compared with other methods. In terms of image quality, MalleNet-R is
able to reach similar PSNR/SSIM compared to most baselines, and only slightly
behinds the approaches with very heavy computational cost or equipped with
complex channel/spatial attention module. We show the PSNR-to-Complexity
trade-off of each method in Fig. 12 right. More visual comparisons are included
in the supplementary materials.
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Input MalleConv Selected kernel 1 Selected kernel 2

Fig. 11. Comparison between default MalleConv output (column2) and outputs using
two selected kernels (column 3 and 4).
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Fig. 12. Results on CBSD68 test set (σ = 50) and SIDD validation set. Our
proposed MalleNet architecture achieves a better trade-off between quality and speed.

5 Conclusions

In this work, we propose Malleable Convolution (MalleConv), an efficient variant
of spatially-varying convolution tailored for ultra-fast image denoising. Malle-
Conv processes a low-resolution feature map and generates a much smaller set
of spatially varying filters. The generated filters inherently fit the heterogeneous
and spatially varying patterns presented in natural images, while taking little
additional computational costs. Despite its effectiveness, we also observe that
very deep or wide architectures benefit less from MalleConv, as they may also
capture heterogenous image statistics in a less efficient way. Although in this
work, we only evaluated MalleConv on image denoising, we believe MalleConv
is also capable in other image processing tasks, like dehazing. Another future
work is to combine MalleConv with attention mechanism [38] or deformable
shape [14] to further improve its quality in applications with less computational
constraints.
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