A Comparison with general image restoration methods

We compare our TAPE-Net with two models, DnCNN [21] and UNet [17], which
are widely used in image restoration tasks. As shown in Table S1, our model
outperforms these two models on all datasets. Note that for a fair comparison,

we set the compared models with a similar number of FLOPs. The parameters
of DnCNN, UNet, and our TAPE are 0.5M, 9.8M, and 1.3M, respectively.

Table S1: Quantitative comparison for three models (in terms of PSNR (dB)).
Dataset |Rain200L Rain200H Raindrop800 SIDD TIP2018|Snow100K ISTD |FLOPs

DnCNN [21] 27.73 19.20 26.12 34.31 24.74 23.77 23211144 G
UNet [17] 31.50 22.50 26.41 33.72  25.58 2348  25.64|18.2 G
TAPE-Net (Ours)| 33.17 23.84 27.69 37.90 27.52 26.33 26.57|14.1 G

B Comparison with task-specific methods

As shown in Table S2, we firstly compare our methods with state-of-the-art
denoising methods (DnCNN [21], FFDNet [22], RDN [23], and SADNet [1]).
Note that the FLOPs number of our method (14.1G) is much smaller than that
of RDN (46.6G) or SADNet (45.8G), when the input is a 64 x 64 RGB image.
We replace our backbone model (original transformer) with a specially designed
transformer, Swin transformer [14] (termed as ‘TAPE-Net-swin-L’ in Table S2),
which outperforms all the SOTA methods with our pre-training strategy.

And we also compare with SOTA deraining methods in Table S3 and compare
with SOTA demoireing methods in Table S4. Our method outperforms all these
task-specific SOTA methods.

Table S2: Quantitative comparison with the state-of-the-art denoising methods
on SIDD.
Method  DnCNN [21] FFDNet [22] RDN [23] SADNet [1] TAPE-Net (Ours) TAPE-Net-swin-L (Ours)

PSNR/SSIM 34.31/0.892 33.26/0.890 38.70/0.901 38.41/0.900  37.90/0.896 38.76/0.901
FLOPS (G) 14.4 0.87 46.6 45.8 14.1 5.3




Table S3: Quantitative comparison with the state-of-the-art deraining methods
on Rain200L and Rain200H. The best result are in Bold.

Dataset ‘ Method DDN [6] SPANet [19] RESCAN [12] PreNet [16] BRN [15] PCNet [10] TAPE-Net (Ours)
Rain200L|PSNR/SSIM 28.35/0.878 30.92/0.930 32.07/0.949 31.98/0.948 32.40/0.953 32.62/0.954  33.17/0.959
Rain200H[PSNR/SSIM 20.98/0.705 22.65/0.714 23.04/0.729 23.27/0.743 23.39/0.755 23.43/0.755  23.84/0.759

Table S4: Quantitative comparison with the state-of-the-art dermoireing meth-
ods on TTP2018. The best result are in Bold.

Method ~DMOCNN [18] MopNet [8] HRDN [20] FHDe2Net [7] WDNet [13] MBCNN [24] TAPE-Net (ours)
PSNR/SSIM 25.82/0.806 26.20,/0.861 26.68/0.864 26.25/0.862 26.86/0.865 27.37/0.866  27.52/0.866

C Additional visualization results.

C.1 Visualization some results of the prior queries, Q.

We also visualize some other results of the prior queries (@) of TAPE. As shown
in Fig. S1, (a) and (b) are rain inputs and ground truth respectively; (c) are one
of the predicted results of PLM. We can see that with the help of pre-training,
the PLM module can correlate the information of similar textures or patches
from a long distance. Thus, the transformer decoder of the backbone can utilize
these long-distance similar areas/patches to restore the image.

C.2 Visualization some results of learned parameters (e).

We visualize the learned parameters (e) of TAPE. Fig. S2 shows some visualiza-
tion results of learned parameters (e) and the position embeddings of IPT (these
results are copied from [2]). We can find that our learned parameters (e) focus
on other patches with farther distances than the position embeddings of IPT.
Besides, our learned feature maps show richer patterns. For example, some of
the patches focus on the four corners of the image at the same time (the patch
on the 3rd row and 2nd column). Some of the patches focus on the characters of
oblique directions (the patch on the 1st row and 5th column). These rich feature
maps do not appear in the visualization results of IPT.

D Additional results on other transformer backbones.

Our TAPE is a widely applicable method, where the backbone can be replaced by
other transformer backbones. We replace our backbone network with the swin
transformer backbone [14] for experiments. As shown in Table S5, ‘Baseline-
swintrans’ is the Swin transformer backbone without pre-training. ‘TAPE-Net-
swintrans-S’, ‘TAPE-Net-swintrans-M’, and ‘TAPE-Net-swintrans-L’ are our TAPE-
Nets with the Swin transformer backbone and contain 1 Swin block, 3 Swin
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Fig.S1: Visualization of some results of the prior queries, @ on the Rain200L
dataset. (a) Rain inputs. (b) Ground truth. (c) one of the predicted results of

PLM.
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Fig.S2: Visual comparison between our learnable parameters and the position
embeddings of IPT. Our learnable parameters show more richer patterns.

blocks and 5 Swin blocks, respectively. The results illustrate that our 3-stage
pre-training and adding blocks can significantly boost the performance.

E Ablation study about optimization in task-specific
fine-tuning.

In Sec. 3.2.1, there are two ways to optimize the networks in the task-specific fine-
tuning stage, namely: 1) The backbone ¢ is fine-tuned by loss between pseudo GT
and GT firstly, and then fixed when fine-tuning other networks (denoted as Step
by Step finetuning in Table S6); 2) All components are fine-tuned simultaneously
(denoted as Joint finetuning in Table S6). As shown in Table S6, the performance
of the two methods is equivalent. How to choose different optimization methods
for different tasks is future work.

F Ablation Study of pixel-wise contrastive loss.

We remove the pixel-wise contrastive loss in the task-agnostic pre-training. And
the PSNR/SSIM decrease by 0.12dB/0.001 on Rain200L without the proposed
pixel-wise contrastive loss.



Table S5: Quantitative comparison for Baseline-swintrans and TAPE-Net-trans
(in terms of PSNR (dB)). The numbers in () of the 2nd line are the PSNR gain
compared with ‘Baseline-swintrans’.

|Blocks numbers Network parameters Rain200L (dB) SIDD (dB) Raindrop800 (dB)

Baseline-swintrans 1 0.19M 33.52 38.01 27.79
TAPE-Net-swintrans-S 1 0.19M 34.07 (+0.55) 38.76 (+0.75) 28.31 (+0.52)
TAPE-Net-swintrans-M 3 0.61M 34.20 38.87 28.97
TAPE-Net-swintrans-L 5 0.97M 34.46 38.98 29.15

Table S6: Comparison between Step by step fine-tuning and Joint fine-tuning.

TAPE-Swin Rain200L Rain200H Raindrop800-TestB
Step by step fine-tuning  35.10 26.18 26.41
Joint fine-tuning 35.06 26.05 26.49

G Ablation Study about Transformer or CNN.

We replace the transformer encoder and decoder with the ResNet encoder and
decoder [9] respectively with the same model size. The feature map outputed
from the encoder and the feature map outputed from the PLM are concate-
nated and served as the input of the ResNet decoder. We do the ablation study
on the Rain200L dataset with the same setting as Sec. 4.5 of the main pa-
per. The PSNR/SSIM drops 1.03dB/0.006 compared with the baseline with the
transformer encoder and decoder. The result shows that using the transformer
is better when fusing the information of the output of PLM and the encoder.
We also made a comparison between pre-trained CNN and no-pre-trained CNN.
Compared with transformer, CNN’s performance improvement is much smaller.



H Visual comparison with other SOTA methods on
desnowing and shadow removal

We compare our method with several state-of-the-art desnowing and shadow
removal methods. Fig. S3 and Fig. S4 show our method can remove the shadow
or snow. Please note that these compared methods use the snow/shadow masks
for training, while our method only uses snow /snow-free or shadow/shadow-free
image pairs.

Ghost-freeNet TAPE-Net Ground Truth

Fig.S3: Visual shadow removal comparison among ours and two other methods
(DC-ShadowNet [11] and Ghost-freeNet [5]).

Input JSTASR HDCWNet TAPE-Net Ground Truth

Fig. S4: Visual desnowing comparison among ours and two other methods (JS-
TASR [3] and HDCWNet [4]).
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