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Abstract. Benefiting from the powerful ability of convolutional neural
networks (CNNs) to learn semantic information and texture patterns of
images, learning-based image inpainting methods have made noticeable
breakthroughs over the years. However, certain inherent defects (e.g. lo-
cal prior, spatially sharing parameters) of CNNs limit their performance
when encountering broken images mixed with invalid information. Com-
pared to convolution, attention has a lower inductive bias, and the output
is highly correlated with the input, making it more suitable for processing
images with various breakage. Inspired by this, in this paper we propose
a novel attention-based network (transformer), called hourglass attention
network (HAN) for image inpainting, which builds an hourglass-shaped
attention structure to generate appropriate features for complemented
images. In addition, we design a novel attention called Laplace atten-
tion, which introduces a Laplace distance prior for the vanilla multi-head
attention, allowing the feature matching process to consider not only
the similarity of features themselves, but also distance between features.
With the synergy of hourglass attention structure and Laplace attention,
our HAN is able to make full use of hierarchical features to mine effec-
tive information for broken images. Experiments on several benchmark
datasets demonstrate superior performance by our proposed approach.
The code can be found at github.com/dengyecode/hourglassattention.
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1 Introduction

Image inpainting [3] is the process of filling missing areas of an image with
reasonable content. It can support many applications such as removing objects,
restoring old photos, image editing, etc. For image inpainting, it is most critical
to be able to give plausible content to fill the target region based on the observed
region and make the whole image consistent.

https://github.com/dengyecode/hourglassattention
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Fig. 1. Illustration of the connection between exemplar-based methods and attention
mechanisms. Exemplar-based methods often try to find the appropriate content for
broken regions in visible regions based on certain prior, while the result of the attention
is obtained by weighting the ”value” based on the similarity between the ”query” and
the ”key”. Thus we can consider the attention mechanism as a special exemplar-base
method, where the “key-value” pairs play the role of exemplar.

Traditional exemplar-based methods [1,26,2,21] usually match and copy back-
ground patches into missing areas or by propagating information from bound-
aries around the missing regions. These methods are quite effective for images
with only a small portion of breakage or repeated patterns, while they often fail
to generate reasonable results for images with large broken regions or complex
structures due to the lack of higher-level semantic understanding of the image.

In recent years, benefiting from the advantages of convolution neural net-
works (CNNs) for representation learning, learning-based approaches [39,22,58,28]
have made noticeable breakthroughs. Nonetheless, CNNs have some limitations
in complementing broken images. Firstly, each filter of CNNs spatially shares
convolution kernel parameters when dealing with the broken input. For a single
image with both broken and normal areas, each vanilla convolution operator
allocates identical kernels for both valid, invalid as well as mixed (e.g. the ones
located on broken border) features (pixels), which easily leads to structural dis-
tortions, texture blurring and artifacts, especially when the patterns are complex
or the damaged regions are vast [30,59]. Secondly, CNNs that operate only within
a local window are inefficient at modeling the long-range structure of an image,
while in the processing of image inpainting, proper information within the entire
image, sometimes far away from the corrupted regions, needs to be utilized for
corrupted regions.

To relieve the above limitation, we propose to learn an Hourglass Attention
Network (HAN) for image inpainting, which builds an hourglass-shaped atten-
tion structure based on the powerful texture pattern learning capability of CNNs
to mine the contextual information in the hierarchical features to generate ap-
propriate feature maps for the reconstructed images. Compared to convolution,
the attention module has a lower inductive bias and is able to generate differ-
ent weights depending on the miscellaneous input, thus making it more suitable
and flexible for images with multiple breakages in the inpainting tasks. Besides,
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there is a close connection between the attention based and the exemplar-based
methods in terms of borrowing information from within the image. Specifically,
exemplar-based approaches try to find the most plausible content to fill the tar-
get (unknown) areas based on the observed region of the image. As for the (dot-
product) attention, the result is based on the relationship between the “query”
and the “key-value” pairs, and we can consider the “key-value” as a special kind
of exemplar, as shown in Figure 1.

Our Hourglass Attention Network (HAN) consists of three parts, including a
CNN encoder, a CNN decoder, and the hourglass attention structure. Particu-
larly, the encoder is a stack of multiple convolution layers. It can be considered
as a learnable feature extractor, which is responsible for the input images into
the feature maps. The decoder, on the other hand, is similar in structure to the
encoder and corresponds to the task of decoding the feature map into output
images. As for the hourglass attention structure, it consists of attention blocks
designed for feature sequences of different patch sizes stacked in a certain or-
der, based on the property that a feature map can be divided into sequences of
different patch sizes. To be specific, we divide the hourglass attention structure
into two parts, the feature encoding and the feature decoding. In the feature
encoding part, we employ the attention blocks from small to large according to
the patch size, while in the feature decoding part we place the blocks from large
to small. Therefore, the feature map resolution (number of patches) decreases
gradually in the feature encoding phase and increases gradually in the feature
decoding phase, which is similar to autoencoder or U-net [44]. Furthermore,
since the dot-product attention is performed without considering the effect of
the influence of features located in different locations. In contrast, early work on
image restoration [8] emphasizes the impact of location. Therefore, we propose
the Laplace attention, which introduces a new distance prior in the calculation
of similarity and represents the effect of spatial location in the form of a Laplace
distribution.

In summary, in this paper our contributions are summarized as follows:

– We propose a novel attention-based network (or transformer), called Hour-
glass Attention Network (HAN) for image inpainting, which combines the
respective advantages of attention module and convolution to complete the
image features.

– Our proposed hourglass result not only improves the quality of the inpaint-
ing image by using hierarchical feature information, but also reduces the
computational complexity compared to the vanilla transformer structure.

– We propose Laplace attention, which considers not only the features them-
selves but also the effect of the distance between features located at different
locations when calculating the attention scores. The effect is also more effi-
cient than the position encoding in transformer.

– Experiments on several datasets show that our proposed approach is effective
and performs favorably against state of the art inpainting approaches.
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2 Related Work

2.1 Image Inpainting

A variety of different approaches have been proposed for image inpainting, and in
general these methods can be divided into the following two categories, namely
traditional exemplar-based image inpainting methods and learning-based in-
painting methods.

Traditional exemplar-based approaches [3,1,7,2,10] usually match and copy
background patches into missing areas or by propagating information from bound-
aries around the missing regions. They perform pretty well on small holes or
background inpainting tasks. Nonetheless, due to the low ability to obtain high-
level semantic information, they cannot effectively complement images that have
complex patterns or generate novel objects that are not present in the observed
part.

Learning-based image inpainting approaches usually formulate inpainting as
a conditional image generation problem based on CE (Context Encoders) [39],
which is the first to introduce a generative adversarial network [14] framework
in image inpainting fields and to use an autoencoder as its conditional image
generator. Iizuka et al. [22] improve the quality of CE by designing a local-
global discriminator. Then some researchers [55,46,58,50,62,32] propose a kind
of contextual attention module to alleviate the deficiencies of CNNs in capturing
long-range dependencies. Next for the problem of spatially sharing parameters,
some researchers [30,59,54,53,51] modify convolution operation to adapt the dif-
ference between the damaged areas and non-damaged areas in images to obtain
more accurate features comparing vanilla convolution. Due to the sparsity of the
effective information caused by the broken image, some researchers have tried to
guide generation of the missing content through other information of the image,
such as edges [37], structure [43,27,31,16]. Finally, to extend the applicability
of image inpainting, some researchers have started to focus on high-resolution
large-area broken image inpainting [57,63,65], as well as diverse image inpaint-
ing [66,64,40,33,49].

2.2 Attention

The attention mechanism can be viewed as a way to bias the allocation of avail-
able computational resources towards the most informative components of a
signal [20]. The transformer [48] constructed with attention as a cornerstone
was firstly proposed for machine translation and has subsequently been proven
successful in various down-stream natural language processing tasks. Carion et
al. [5] started to introduce the transformer to the field of vision, and a series
of transformer-based backbone networks [11,29,47,34,52,6,4] for high-level vision
tasks were proposed. Moreover, because attention can model dense correlations
between input elements well, some models have begun to explore transformer-
based models for applications in low-level vision [56,61]. However, existing visual
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Fig. 2. Pipeline Overview. Our model consists of three parts including a CNN encoder,
a CNN decoder, and an hourglass attention structure. The encoder is responsible for
extracting features from the input image, and the decoder is used to render the features
into an image. The hourglass attention structure is created by stacking designed at-
tention blocks in an hourglass shape, which exploits the powerful long-range modeling
capability of attention to fully mine the contextual information in hierarchical features.

transformers often do not focus specifically on the effects of distance between fea-
tures. Motivated by recent progress in self-attention approaches [15,42,25,18] for
language modeling, we propose Laplace attention that remedies this deficiency.

3 Approach

The process of image inpainting is to predict the intact version (ground truth)
Ig of a given corrupted image Im by filling in the missing pixels. The overview
of the proposed Hourglass Attention Network (HAN) is shown in Figure 2. HAN
contains a CNN encoder, CNN decoder, and the most critical hourglass attention
structure. We will describe them in detail below.

3.1 Hourglass Attention Structure

Our hourglass attention structure is composed of tailored attention block based
on feature patches of different sizes. The design of this attention block we refer to
the encoder block in the vanilla transformer [48] and contains two sublayers. The
first is a proposed Laplace attention layer, and the second is a simple feed-forward
network (FFN). In addition, we adopt a residual connection [17] adhering to each
of the sub-layers. Our hourglass attention structure consists of two processes,
followed by feature encoding and feature decoding. In the process of feature
encoding, we adopt a gradual reduction strategy to control the number of feature
patches, and in the process of decoding, we adopt a gradual increase strategy.
Specifically, after the broken image is passed through the encoder, we get a
feature map F ∈ RH×W×C . In the process of feature encoding, first we divide
F into HW patches, each of size 1 × 1 × C. Then we feed this patch sequence
to the sub-layers of the first attention block. The process of the feature passing
through the first module is denoted as “ Stage E1”.

The procedure is repeated 3 more times with different patch sizes during
the process of feature encoding, as “Stage E2”, “Stage E3” and “Stage E4”. In
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Fig. 3. Details of the proposed Laplace attention. Our proposed laplace prior adds a
distance prior to the vanilla multi-head attention to capture the effects of distances
located between different spatial locations. “Distance Computing” in the figure means
calculating the taxicab geometry between feature patches.

brief in the process of feature encoding, in each “Stage Ei” we firstly divide the
input feature map F ∈ RH×W×C into HW

s2i
patches, and each of size si × si ×C

(where si = 1, 2, 4, 8 in order). Then we feed these feature patches into the
subsequent sub-layers of the attention block and output a new feature map with
the same size as F . And as the network gets deeper, the number of patches will
gradually decrease and the size of patches will gradually increase, which shares
some similarities with T2T-ViT [60], PVT [52] and Swin [34]. In addition, the
number of patches (spatial resolution) decreases progressively and the dimension
of patches (number of channels) increases progressively, which is similar to the
classical convolutional network design, such as VGG [45], Resnet [17].

As for the feature decoding process, it can be basically regarded as the inverse
process of feature encoding. In each stage of feature decoding, we also divide the
input feature F ∈ RH×W×C into HW

s2i
patches, with size si × si × C (where

si = 8, 4, 2, 1 in order). Then similar to the feature encoding, these patches are
feed to sub-layer of the attention block and obtain the corresponding feature
map. The feature decoding process consists of four stages, in the order of “Stage
D4”, “Stage D3”, “Stage D2”, and “Stage D1”. And as the network goes deeper,
the number of patches (spatial resolution) increases and the dimension of patch
(number of channels) decreases similar to classical generative networks, such as
DCGAN[41]. These proposed stages are arranged in our inpainting network as
“Stage E1, E2, E3, E4, D4, D3, D2, D1”, which jointly form a symmetric hour-
glass structure that generates a hierarchical feature representation as a classical
autoencoder. They leverage the features information at multiple scales to fully
exploit the contextual formation of the input and generate suitable features for
the broken ares.
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In summary, the hourglass attention structure allows our model to utilize
multi-scale information, which not only allows our model to improve performance
but also reduces computational complexity, as shown in Table 2 and Table 4.

3.2 Laplace Attention

Our Laplace attention can be regarded as a multi-head self-attention [48] with
the special Laplace prior. Suppose that the patch size of the “Stage” where
an attention located is s. First we embed a feature map F ∈ RH×W×C into a
query feature Q ∈ RH×W×C , a key feature K ∈ RH×W×C and a value feature
V ∈ RH×W×C by different linear layers. Then we extract patches of shape d =
s×s×C from the query Q and we can get l = H/s×W/s patches. Next we flatten
and reshape these patches into column vectors, and then merge the vectors into
a matrix Q ∈ Rd×l, i.e. l d-dimensional patch sequences. Similar operations are
performed for key K, value Q to obtain the corresponding K ∈ Rd×l, V ∈ Rd×l.
Moreover, inspired by the language model [15,42,25,18], we introduce a Laplace
prior on the similarity distribution (the softmax output in attention) to reflect
the effect of distance in attention. Specifically, suppose the spatial coordinates
ci, cj of patches qi, kj are (xi, yi), (xj , yj). For each qi we introduce a two-
dimensional spatial “isotropic” Laplace distribution pi(c) ∼ Laplace(c | µi, I)
(where µi = (xi, yi)

⊤, and I is an identity matrix) as prior for the attention
score (the value obtained after softmax). As shown in the Figure 3, the attention
output oi ∈ Rd for i-th query patch qi ∈ Rd in Q can be defined by by:

oi = Attention
(
qi, {kj}lj=1, {vj}lj=1

)
=

l∑
j=1

pi(cj) exp(q
⊤
i kj)∑l

n=1 pi(cn) exp(q
⊤
i kn)

vj

=

l∑
j=1

exp(−tij) exp(q
⊤
i kj)∑l

n=1 exp(−tin) exp(q⊤
i kn)

vj

=

l∑
j=1

softmaxj(q
⊤
i kj − tij)vj

≈
l∑

j=1

softmaxj(q
⊤
i kj − |w|tij)vj

(1)

where kj ∈ Rd is j-th key patch in K and vj ∈ Rd is corresponding j-th value
patch in V , 1 ≤ i, j ≤ l, tij = |xi − xj | + |yi − yj | and |w| means a learnable
parameter greater than 0. Since the variance of the Laplace distribution pi(c)
will not always be I in real situations, we use |w| to represent the variance here to
enhance the flexibility of the model. Therefore, the incorporation of the taxicab
geometry (l1-distance) between the patches can also be seen as the Laplace prior
when calculating the similarity.
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Furthermore, revisiting the process of extracting patches from the feature
Q ∈ RH×W×C , when we choose patches of larger size s, the dimension d = s×s×c
of the patch is also larger, and the length l = H/s×W/s of the patch sequences is
smaller, so the size of the attention matrix l× l is smaller. Therefore, to alleviate
parameter redundancy, we perform 4s-heads attention in parallel, as:

O = Concate (Head 1, . . . ,Head 4s) (2)

where O ∈ RH×W×C and

Head i = Attention (Qi,Ki,V i)

where Qi ∈ R
sC
4 ×HW

s2 , Ki ∈ R
sC
4 ×HW

s2 , V i ∈ R
sC
4 ×HW

s2 are matrix stacked by

the vectors qi ∈ R sC
4 , ki ∈ R sC

4 , vi ∈ R sC
4 , respectively.

In summary, with the help of multi-head and the distance prior, the Laplace
attention, can effectively borrow relevant features from different regions, which
better models the long range dependencies inside feature maps.

3.3 Loss Functions

The loss function Lall for training our HAN consists of four terms, containing
the L1 loss, the perceptual loss [23], the style loss [12] and the adversarial loss
[14], as:

Lall = αLre + βLperc + γLstyle + λLadv (3)

where α, β, γ, and λ hyper-parameters. In our experimental procedure, we set
α = 1, β = 1, γ = 250, and λ = 0.1.

L1 Loss The L1 loss refers to the value of the L1-norm of the difference between
the complementary images Iout and the real image Ig, :

Lre = ∥Iout − Ig∥1 (4)

Perceptual Loss The perceptual loss measures the feature map between the
real image Ig and the output Iout, as:

Lperc = E

[∑
i

1

Ni
∥ϕi (Iout)− ϕi (Ig)∥1

]
(5)

where ϕi is the feature map of the i-th layer of pre-trained VGG-19 [45]. And ϕi

contains activation Relu1 1 [13], Relu2 1, Relu3 1, Relu4 1, and Relu 51 of the
VGG-19.

Style Loss The style loss is similar to perceptual loss, as:

Lstyle = Ej

[∥∥GΦ
j (Iout)−GΦ

j (Ig)
∥∥
1

]
(6)

Where GΦ
j is a Cj ×Cj Gram matrix formed by the corresponding feature maps

ϕj . Here, ϕj contains the same layers as the ϕj in perceptual loss.
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Table 1. Numerical comparisons on the several datasets. The ↓ indicates lower is
better, while ↑ indicates higher is better

DataSet Paris Street View Celeba-HQ Places2

Mask Ratio 10-20% 20-30% 30-40% 40-50% 10-20% 20-30% 30-40% 40-50% 10-20% 20-30% 30-40% 40-50%

FID↓

GC 20.68 39.48 58.66 82.51 2.54 4.49 6.54 9.83 18.91 30.97 45.26 61.16
RFR 20.33 28.93 39.84 49.96 3.17 4.01 4.89 6.11 17.88 22.94 30.68 38.69
DSN 16.28 29.39 42.02 53.66 1.91 3.18 4.70 6.20 13.64 22.74 31.97 41.14
DTS 16.66 31.94 47.30 65.44 2.08 3.86 6.06 8.58 15.72 27.88 42.44 57.78
Ours 12.39 22.70 35.29 46.93 1.49 2.58 3.93 5.39 12.01 20.15 28.85 37.63

PSNR↑

GC 32.28 29.12 26.93 24.80 32.25 29.10 26.71 24.78 28.55 25.22 22.97 21.24
RFR 30.18 27.76 25.99 24.25 30.93 28.94 27.11 25.47 27.26 24.83 22.75 21.11
DSN 31.06 28.05 25.92 24.05 32.72 29.53 27.15 25.34 28.39 25.03 22.69 20.97
DTS 32.69 29.28 26.89 24.97 32.91 29.51 27.02 25.13 28.91 25.36 22.94 21.21
Ours 32.97 29.92 27.60 25.67 33.04 29.94 27.53 25.62 28.93 25.44 23.06 21.38

SSIM↑

GC 0.960 0.925 0.872 0.800 0.979 0.959 0.931 0.896 0.944 0.891 0.824 0.742
RFR 0.943 0.908 0.861 0.799 0.970 0.958 0.939 0.913 0.929 0.891 0.830 0.756
DSN 0.952 0.914 0.859 0.791 0.981 0.963 0.939 0.910 0.946 0.894 0.827 0.749
DTS 0.963 0.929 0.875 0.812 0.981 0.962 0.937 0.905 0.952 0.901 0.834 0.755
Ours 0.966 0.936 0.891 0.834 0.983 0.967 0.945 0.918 0.957 0.903 0.839 0.762

Adversarial Loss The adversarial loss is defined by:

Ladv = EIg [logD (Ig)] + EIout log [1−D (Iout)] (7)

where D is the a PatchGAN discriminator with spectral normalization [36].

4 Experiments

We evaluated our HAN on three public datasets, including Paris street view
(Paris) [39], CelebA-HQ [24] and Places2 [67]. For data splitting, in CelebA-HQ
we chose the first 2000 images as the test set and the rest as the training set.
As for Paris and Places2, we used their original data splitting. The resolution of
all images during experiment was resized to 256× 256. In addition, we used the
classical mask dataset [30] to determine the location of image breakage during
the test. Our proposed HAN was implemented based on Pytorch [38]. In the
training process we used a RTX3090 (24 GB) and set the batch size to 6. We
used an AdamW [35] optimizer with with β1 = 0.5, β2 = 0.9 to train the model.
At the start, a learning rate of 10−4 was used to train the model and then
we used 10−5 for fine-tuning the model. Specifically, on CelebA-HQ and Paris,
we trained 600,000 iterations and then fine-tuned 150,000 iterations. On the
Places2 data set, we trained about 1.2 million iterations and then fine-tuned
400,000 iterations.

4.1 Baselines

We compare with the following baselines for their state-of-the-art performance:

– GC [59]: a two-stage inpainting model, which leverages the gated convolution
and the contextual attention [58].



10 Ye Deng et al.

Ours TruthDTSDSNRFRGCInput

Fig. 4. Qualitative results with GC [59], RFR [28], DSN [51], DTS [16] and our models.
The images in each of the two rows from top to the bottom are taken from CelebA-HQ,
Paris street view, Places2 respectively. (Best viewed with zoom-in)

– RFR [28]: a recurrent inpainting model with a sepcial contextual attention
which recurrently infers the hole and progressively strengthens the result.

– DSN [51]: an U-net inpainting model, which expands the receptive field of
convolution based on deformable convolution [9] to skip those broken features
and thus learns more valid information.

– DTS [16]: a dual U-net inpainting model, which recovers corrupted images by
simultaneous modeling structure-constrained texture synthesis and texture-
guided structure reconstruction.

4.2 Quantitative Comparison

We chose FID (Fréchet Inception Distance) [19], PSNR (peak signal-to-noise
ratio), and SSIM (structural similarity index) to evaluate our model. SSIM and
PSNR measure the similarity of pixels and structural information from paired
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Input GC RFR DSN DTS Ours Truth

Fig. 5. Fail results from Places2 with GC [59], RFR [28], DSN [51], DTS [16] and our
models. when a large portion of the image got corrupted, our method is not able to
obtain sufficient long term dependency information to assist reconstruction, and hence
only the small handset wire part got restored. (Best viewed with zoom-in)

images. SSIM and PSNR are widely used for image evaluation and measure the
similarity of pixels and structural information from paired images to provide an
appropriate approximation to human visual perception. Nonetheless, sometimes
the results of inpainting are diverse from original images for the target areas (e.g.
object removal described in [59]), while these metrics are limited to comparing
with the original image content. Therefore we also adopted FID to indicate the
perceptual quality of the results as generally adopted metric in image generation.
As seen from Table 1, our proposed model achieves superior results compared
with other baselines in almost all metrics. Meanwhile, favorable performance
is achieved in our proposed method of filling irregular holes with various hole
versus image ratios. It is worth noting that the advantage of our model tends to
be more pronounced when the percentage of breakage is larger compared to other
methods, which demonstrates the stronger adaptability of our proposed method
to inputs mixed with invalid information with the addition of the hourglass
attention structure.

4.3 Qualitative Comparisons

Figure 4 shows qualitative results with previous state-of-art baselines to ours.
GC [59] can get pretty credible results, but there is still some blurring on the
completed images. The images predicted by RFR [28] are quite good in terms of
detail texture, but the downside is that some artifacts appear on the generated
images. The results generated by DSN [51] show fewer artifacts compared to
RFR but are still not particularly desirable. The image produced by DTS [16]
basically has no obvious artifacts, but when it recovers an image with complex
patterns, the content filled is often not consistent with the original image, e.g.,
double eyelid on the left but single eyelid on the right in the second row of the
Figure 4. In contrast, our method generally does not bring significant artifacts
when completing the image, and learns to represent structures and textures in
a consistent formation. Note the last row of Figure 4, when part of the stick can
be observed, our reconstructed portion shows a well connected stick structure,
which also show the effectiveness by our method when non-local information
can be modeled. In addition we show cases of failure of each model, as shown in
Figure 5. More qualitative comparisons are shown in the supplementary material.



12 Ye Deng et al.

Table 2. Ablation study on impact of the hourglass structure. The ↓ indicates lower
is better, while ↑ indicates higher is better

FID↓ PSNR↑ SSIM↑

Mask Ratio 10-20% 20-30% 30-40% 40-50% 10-20% 20-30% 30-40% 40-50% 10-20% 20-30% 30-40% 40-50%

w/ reverse 12.93 23.84 36.63 48.56 32.45 29.65 27.43 25.39 0.963 0.933 0.886 0.828
w/o hourglass 13.13 24.42 36.18 49.33 32.53 29.59 27.38 25.37 0.963 0.933 0.887 0.829

Ours 12.39 22.70 35.29 46.93 32.97 29.92 27.60 25.67 0.966 0.936 0.891 0.834

Table 3. Ablation study about the layer number of the hourglass attention. The ↓
indicates lower is better, while ↑ indicates higher is better

FID↓ PSNR↑ SSIM↑

Mask Ratio 10-20% 20-30% 30-40% 40-50% 10-20% 20-30% 30-40% 40-50% 10-20% 20-30% 30-40% 40-50%

+0 16.08 32.22 48.27 68.21 31.66 28.63 26.07 23.87 0.956 0.918 0.854 0.771
+1 13.33 24.75 37.84 51.31 32.62 29.59 27.20 25.17 0.963 0.931 0.882 0.819
+2 13.09 23.69 36.55 49.71 32.73 29.71 27.43 25.26 0.964 0.933 0.886 0.824
+3 12.99 23.12 35.51 47.18 32.75 29.82 27.55 25.37 0.964 0.934 0.890 0.827

+4(ours) 12.39 22.70 35.29 46.93 32.97 29.92 27.60 25.67 0.966 0.936 0.891 0.834

5 Ablation Study

We explore the impact of our proposed module on the Paris dataset.

5.1 Effectiveness of Hourglass Attention Structure

Here we validate the role of the proposed hourglass attention structure, and
the results are shown in Tables 2 and 3 respectively. In Table 2, we design two
other attention structures to compare with our hourglass structure, including
the standard structure (similar to the vanilla transformer, with patch size of the
attention module all set to s=1, i.e. without hourglass structure) and the spindle
structure (i.e., reversing the order of the attention blocks in hourglass structure,
as “Stage E4, E3, E2, E1, D1, D2, D3, D4”, denoted by “reverse”). As we can see,
compared to the standard structure, our hourglass structure utilizes multi-scale
hierarchical feature information more helpful for image inpainting. Additionally,
the hourglass structure from smallest to largest during encoding and largest to
smallest during decoding is also more reasonable than the spindle structure with
reversed order.

Further, we performed a series of experiments to demonstrate the effective-
ness of hierarchical attention, as shown in Table 3. In the Table 3, S0 represents
no inclusion attention module, S1 represents inclusion only “Stage E1, D1”, then
S2 represents inclusion “Stage E1, E2, D2, D1”, and so on. We find that stacking
more hierarchical attention can bring continuous improvements.

Finally, we show the advantage of the hourglass structure in terms of com-
plexity and compare it with other baseline models, as shown in Table 4, where
“MHA” represents the multi-headed attention (i.e., the vanilla transformer)
without the hourglass structure. For a feature F ∈ RH×W×C , the complex-
ity of attention can be simplified to O(CH2W 2/s2), where s is the size of the
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Table 4. Model complexity. Here we provide the FLoating-point OPerations (FLOPs)
and parameters (Params) of the model

Model GC RFR DSN DTS MHA Ours

FlOPs 103.1G 206.1G 24.8G 75.9G 183.6G 137.7G
Params 16.0M 30.6M 99.3M 52.1M 19.4M 19.4M

Table 5. Ablation study on impact of the distance prior. The ↓ indicates lower is
better, while ↑ indicates higher is better

FID↓ PSNR↑ SSIM↑

Mask Ratio 10-20% 20-30% 30-40% 40-50% 10-20% 20-30% 30-40% 40-50% 10-20% 20-30% 30-40% 40-50%

w/ Gus 12.94 23.50 35.38 48.26 32.90 29.81 27.52 25.59 0.965 0.934 0.889 0.831
w/ Sin 13.06 23.55 36.39 48.17 32.79 29.76 27.52 25.52 0.964 0.934 0.889 0.832
w/o Lap 13.45 24.57 36.49 48.67 32.50 29.56 27.34 25.42 0.962 0.931 0.885 0.827
Ours 12.39 22.70 35.29 46.93 32.97 29.92 27.60 25.67 0.966 0.936 0.891 0.834

patch. It can be seen that due to the presence of the hourglass dividing the
patches of larger size (s = 1 in the vanilla transformer), our hourglass structure
improves the performance and reduces the complexity at the same time. In addi-
tion, it can be seen from the table that our inpainting model is able to maintain
fewer model parameters and moderate computational effort while achieving a
performance lead compared to other baseline models.

5.2 Effectiveness of distance prior

In our model we introduce a two-dimensional Laplace prior to represent the
effect of the distance between feature patches located in different regions. On
the other hand, many visual transformers [5,52] tend to represent this influence
using an extension of the one-dimensional position encoding (of the vanilla trans-
former [48]) to two dimensions. Here we replace our proposed distance prior with
a 2D position encoding (implemented by trigonometric functions, denoted “Tri”)
and the results show that the position encoding is less effective than the proposed
distance prior, as shown in Table 5. Furthermore, we also compare the case of
replacing the Laplace prior with a Gaussian prior (i.e. replacing the l1-distance
with a square of l2-distance, denoted by “Gus”), removing the distance prior
(denoted by ”no”), and removing the variance coefficient |w|. From the table 5,
it can be seen that the Laplace prior, which makes the attention score decrease
more slowly, is more suitable for image completion than the Gaussian prior. This
may show that for inpainting, with features farther away from the target can still
provide certain valid information for the target. Besides the variance coefficient
|w| makes the model more robust.
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6 Conclusion

In this paper, we propose to learn the hourglass attention network (HAN) for
image mapping, which builds an hourglass attention structure based on the
powerful texture pattern learning capability of CNNs to mine the contextual
information in hierarchical features to synthesize appropriate contents for the
complemented images. Besides, we introduce a new distance prior to the at-
tention mechanism, making the attention to consider not only the similarity of
the features themselves, but also the influence of distance between the features.
Quantitative and qualitative results show that our model is capable of generating
more coherent and fine-detailed results.

Limitation Similar to other learning-based inpainting models [59,28,51,16], it is
still difficult for our HAN to handle images that have complex patterns suffering
from extreme large breakage ratios.

Broader Impact The proposed method will reflect the biases of the datasets
they are trained on and may generate inexistent content. If deployed without
careful consideration, inpainting methods (including but not limited to HAN)
trained on research datasets like Celeba-HQ and Places2 may bring negative
affect by propagating biases in the dataset. These issues warrant further research
and consideration when building upon this work.
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