Supplementary File to "Unfolded Deep Kernel Estimation for Blind Image Super-resolution"

Hongyi Zheng, Hongwei Yong, Lei Zhang

In this supplementary file, we provide the following materials:

- Network architectures of Net_X, Net_K and HypaNet (referring to Section 3.3 and Section 3.4 in the main paper).
- The $\times 3$ BISR results with DEPD-evaluation pool (referring to Section 4.2 in the main paper).
- The BISR results on several selected kernels from the DEPD-evaluation pool (referring to Section 4.2 in the main paper).
- More visualization of kernels estimated by UDKE and other kernel estimation methods (referring to Section 4.2 in the main paper).
- The BISR Results with isotropic Gaussian kernels (referring to Section 4.2 in the main paper).
- Visualization of the outputs in each stage of UDKE (referring to Section 4.2 in the main paper).
- More visualization results of BISR with DEPD kernel pool (referring to Section 4.2 in the main paper).
- More visualization results of BISR on real-world low-resolution images (referring to Section 4.2 in the main paper).

1 Network Architectures of Net_X , Net_K and HypaNet

Fig. 1 shows the network architectures of $Net_{\mathbf{X}}$, $Net_{\mathbf{K}}$ and HypaNet.

2×3 BISR Results with DEPD-evaluation Pool

Table 1 shows the experimental results of $\times 3$ BISR results with DEPD-evaluation pool. Table 2 shows the kernel estimation results. Note that some methods cannot be applied to $3 \times$ SR and thus they are omitted. It can be seen that UDKE based BISR method achieves the highest BISR and kernel estimation performance.

3 BISR Results on Selected DEPD-evaluation Kernels

Table 3 shows the BISR results on some distinct kernels selected from the DEPDevaluation pool. The experiment is done on BSD100 images with s=2 and $\sigma=$ 7.65. It can be seen that UDKE based BISR framework consistently shows the SOTA performance on different testing blur kernels.

2 H. Zheng et al.

Fig. 1: Network architectures of $\mathrm{Net}_{\mathbf{X}},\,\mathrm{Net}_{\mathbf{K}}$ and HypaNet.

Datasets		Set5			BSD100			Urban100	
σ	0	2.55	7.65	0	2.55	7.65	0	2.55	7.65
Bicubic	24.56/.7570	24.51/.7463	24.12/.6819	23.61/.6329	23.56/.6243	23.23/5684	20.80/6258	20.76/.6163	20.62/5601
RCAN	25.26/.7911	25.13/.7582	23.94/.6680	23.90/.7209	23.73/.6826	21.43/5088	21.89/6791	21.65/.6788	20.01/5020
ZSSR	25.22/.7810	24.71/.7419	23.47/.6213	24.10/.7464	23.91/.7098	21.29/4971	22.66/.7043	22.34/.6921	21.09/5179
DASR	25.97/8110	25.37/.7833	23.91/.6452	24.62/.7552	24.55/.7254	21.65/5149	22.71/.7350	22.37/.7152	20.94/5016
DFKP	25.51/.7825	25.03/.7512	22.32/5917	23.79/.7343	23.62/.7043	20.03/4543	20.31/.7040	19.98/.6949	19.02/A654
IKC	24.98/.7656	24.81/.7413	24.01/.6690	24.21/.7460	24.07/.7154	21.87/5029	22.05/.7032	21.68/.7010	20.77/5025
DAN	25.80/8012	25.22/.7637	23.88/.6170	24.42/.7554	24.31/.7213	21.65/5289	22.71/.7335	22.48/.7227	20.65/5230
Ours	29.12/8617	28.92/8478	27.86/8161	26.19/.7768	26.04/.7426	25.43/.6999	24.02/7715	23.92/.7630	23.56/.7416
UBound	32.61/9004	32.23/8711	31.10/8537	29.22/8313	29.02/.7870	28.45/.7636	27.99/8010	26.89/.7862	26.42/.7260

Table 1: $3 \times$ BISR results (PSNR/SSIM). Best results are in red.

Scale	Datasets		Set5			BSD100			Urban100		
	σ	0	2.55	7.65	0	2.55	7.65	0	2.55	7.65	
×3	DFKP Ours	39.2 46.8	39.0 47.0	$\begin{array}{r} 37.8\\ 45.5\end{array}$	38.7 47.1	38.2 46.7	$37.5 \\ 45.1$	37.2 47.3	37.2 47.0	37.0 46.1	

Table 2: Kernel estimation results (PSNR). Best results are in red.

4 More Visualization of Estimated Kernels

Figs. $2\sim3$ show more visualization of kernels estimated by UDKE and other kernel estimation methods. It can be seen that UDKE produces more reliable estimation of unseen blur kernels during inference.

5 BISR Results with Isotropic Gaussian Kernels

Table 4 shows the BISR results with isotropic Gaussian kernels. It can be seen that UDKE achieves competitive results with those BISR methods specifically

3

				. 		٠	٠		
Bicubic	24.52/.6411	24.58/.6025	24.02/.6123	24.04/.6433	24.85/.6768	24.44/.6328	24.52/.6470	24.03/5979	24.68/6708
RCAN	23.72/5365	23.23/5165	23.47/5359	23.01/5011	23.67/5235	23.43/5109	23.73/5498	23.13/5298	23.86/5525
ZSSR	24.71/.6834	25.02/.7043	25.24/.7323	24.83/.7233	24.89/.7310	25.20/.7321	24.99/.7432	25.45/.7236	25.20/.7235
DASR	24.01/5632	23.92/5594	23.45/5293	23.77/5695	23.99/5860	23.04/5202	23.57/5905	23.77/5342	23.12/5231
KGAN	18.45/3928	18.14/3948	18.83/3485	18.10/3101	18.62/3290	18.54/3123	18.65/3483	18.04/2982	18.55/3342
KFKP	16.32/2985	16.10/2583	16.75/2685	16.12/2950	16.01/2409	16.47/2938	16.73/2192	16.95/2940	15.94/2394
DFKP	20.18/3711	19.57/3634	19.85/3621	20.01/3582	20.13/3364	19.03/3531	19.85/3651	20.10/3427	19.57/3922
IKC	25.10/.7343	25.12/.7256	25.01/.7074	25.32/.7368	25.03/.7266	24.98/.6950	25.23/.7654	25.09/.7079	25.20/.7354
DAN	23.62/5543	23.15/5125	23.54/5540	23.92/5783	23.11/5089	23.62/5798	23.35/5610	23.80/5910	23.88/5910
Ours	26.56/.7636	26.54/.7591	26.19/.7397	25.41/.7052	26.56/.7607	26.61/.7635	26.67/.7702	25.14/.7046	26.66/.7673
UBound	1 28.01 / 8409	27.96/8520	27.85/8254	27.67/8175	28.00/8508	27.77/8243	27.91/8378	27.53/8165	28.12/8680

Table 3: BISR results (PSNR/SSIM) on different kernels. Best results are in red.

Fig. 2: Kernel estimation results by different methods on "baby" in Set5 with $s{=}3$ and $\sigma{=}2.55$.

Fig. 3: Kernel estimation results by different methods on "img051" in Urban100 with $s{=}4$ and $\sigma{=}7.65$.

designed for Gaussian kernels but without hardcoding any Gaussian priors, and it achieves the best performance when the noise increases.

6 Outputs in Each Stage of UDKE

Fig. 4 shows the outputs in each stage of UDKE. It can be seen that UDKE progressively improves the estimations of BISR kernel and super-resolution results, which validates the motivation and effectiveness of our architecture design.

s		$\sigma = 0$	$\sigma\!=\!2.55$	$\sigma \!=\! 7.65$
	DAN	29.78/8531/-	29.25/8358/-	28.31/.7510/-
2	KGAN	29.76/8420/47.9	29.13/.7378/46.5	28.10/.7026/45.8
	KFKP	29.79/8530/49.4	29.27/8429/47.1	28.24/.7450/46.2
	DFKP	30.12/8940/49.8	29.40/8611/47.4	28.45/.7570/46.2
	Ours	29.80/8522/48.8	29.24/8435/47.0	28.57/.7700/46.4
	DAN	26.34/.7849/-	25.92/.7320/-	25.42/5820/-
4	KGAN	26.21/.7810/46.2	25.73/.7243/44.2	25.30/5575/41.9
	KFKP	26.48/.7911/46.3	25.94/.7310/44.9	25.43/5801/42.4
	DFKP	26.53/8012/47.5	26.10/.7592/45.3	25.68/.6013/44.4
	Ours	26.43/.7834/46.2	25.98/.7324/44.8	25.72/.6187/44.5

Fig. 4: Outputs in each stage of UDKE on "butterfly" in Set5 with s=2 and $\sigma=0$.

7 More Visualization Results of BISR with DEPD Kernel Pool

Figs. $5\sim12$ visualize the BISR results with DEPD kernel pool. It can be seen that UDKE generally recovers richer and clearer textures (see Figs. 7 and 12) and it is more robust to noisy images (see Figs. 5, 9, 10).

8 More Visualization Results of BISR on Real-world Images

Figs. 13 \sim 18 visualizes the BISR results on real-world images. Note that KGAN, KGAN-FKP, BSRGAN, and RESRGAN cannot be applied to $3 \times$ super-resolution so that their results are not shown for $3 \times$ BISR. One can see that UDKE can reproduce much sharper edges and clearer textures without falsely changing their original patterns.

Fig. 5: BISR results (PSNR/SSIM) on "butterfly" in Set5 with s=2 and $\sigma=7.65$.

(a) Ground truth

(b) RCAN (19.29dB/.5469)

(f) DASR (20.30dB/.6178)

(c) ZSSR (19.86/.6137)

(g) DFKP (18.31dB/.5529)

(d) IKC (20.56dB/.6967)

(h) UDKE (22.38dB/.7540)

Fig. 7: BISR results (PSNR/SSIM) on "86000" in BSD100 with s=3 and $\sigma=0$.

(e) DAN (20.49dB/.6903)

(a) Ground truth

(e) DAN (28.79dB/.8418)

(b) RCAN (27.03dB/.7888)

(f) DASR (28.86dB/.8065)

(c) ZSSR (28.21dB/.8267)

(g) DFKP (24.61dB/.6229)

(d) IKC (28.35dB/.8547)

(h) UDKE (30.17dB/.8755)

Fig. 8: BISR results (PSNR/SSIM) on "baby" in Set5 with s=3 and $\sigma=2.55$).

Fig. 10: BISR results (PSNR/SSIM) on "163085" in BSD100 with $s{=}4$ and $\sigma{=}7.65.$

(a) Ground truth

(g) KGAN (18.95dB/.6888) (h) KFKP (18.93dB/.6883) (i) DFKP (19.31dB/.6948) (j) UDKE (24.47dB/.8083) Fig. 11: BISR results (PSNR/SSIM) on "woman" in Set5 with $s{=}4$ and $\sigma{=}0$.

Fig. 12: BISR results (PSNR/SSIM) on "038" in Urban100 with s=4 and $\sigma=2.55$.

Fig. 13: $\times 2$ BISR results on a real-world image (better viewed on screen).

Fig. 14: $\times 2$ BISR results on a real-world image (better viewed on screen).

Fig. 15: $\times 3$ BISR results on a real-world image (better viewed on screen).

Fig. 16: $\times 3$ BISR results on a real-world image (better viewed on screen).

Fig. 17: $\times 4$ BISR results on a real-world image (better viewed on screen).

Fig. 18: $\times 4$ BISR results on a real-world image (better viewed on screen).