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Abstract. Blind image super-resolution (BISR) aims to reconstruct a
high-resolution image from its low-resolution counterpart degraded by
unknown blur kernel and noise. Many deep neural network based meth-
ods have been proposed to tackle this challenging problem without con-
sidering the image degradation model. However, they largely rely on the
training sets and often fail to handle images with unseen blur kernels
during inference. Deep unfolding methods have also been proposed to
perform BISR by utilizing the degradation model. Nonetheless, the ex-
isting deep unfolding methods cannot explicitly solve the data term of the
unfolding objective function, limiting their capability in blur kernel esti-
mation. In this work, we propose a novel unfolded deep kernel estimation
(UDKE) method, which, for the first time to our best knowledge, explic-
itly solves the data term with high efficiency. The UDKE based BISR
method can jointly learn image and kernel priors in an end-to-end man-
ner, and it can effectively exploit the information in both training data
and image degradation model. Experiments on benchmark datasets and
real-world data demonstrate that the proposed UDKE method could well
predict complex unseen non-Gaussian blur kernels in inference, achieving
significantly better BISR performance than state-of-the-art. The source
code of UDKE is available at https://github.com/natezhenghy/UDKE.

Keywords: blind image super-resolution, blur kernel estimation, un-
folding method

1 Introduction

Blind image super-resolution (BISR), which aims to reconstruct a high-resolution
(HR) image from its low-resolution (LR) counterpart without knowing the degra-
dation kernel and noise, is a very challenging computer vision problem [33]. The
degradation process from an HR image to an LR image can be expressed as:

Y=(K⊛X)↓s+n (1)
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where X is the HR image, Y is its observed LR counterpart, K is the blur kernel,
⊛ is the 2D convolution operator, ↓s is the downsampling operator with scaling
factor s, and n is the additive white Gaussian noise.

A variety of classical methods have been proposed to tackle the BISR prob-
lem [22,14,26]. The interpolation-based methods, such as bilinear and bicubic in-
terpolation, are efficient to implement, whereas they have poor results for BISR.
Model based methods employ a degradation model (e.g ., Eq. 1) to constrain the
fidelity between the predicted SR image and the LR input, and exploit image
priors to regularize the solution. Some representative methods include Maxi-
mum a Posterior [9], recurrence prior [12], etc. Learning based methods aim to
learn image priors and mappings between the LR input and HR image from the
training data, e.g ., dictionary learning [30] and patch based learning [4].

With the rapid development of deep learning, the deep neural network (DNN)
based methods have become prevalent in the research of super-resolution (SR)
and shown highly competitive performance [11]. However, most of the existing
DNN based methods focus on the non-blind SR tasks, where the degradation
process is simply assumed to be bicubic downsampling [38], or direct down-
sampling after blurred by fixed isotropic Gaussian kernels [37]. In real-world
applications, however, the image degradation process is much more complex due
to the unknown varying blur kernels and the corrupted noise, and these non-
blind SR methods often fail. Therefore, DNN based BISR methods have been
later proposed. Zhou et al . [40] analyzed blur kernels in real LR images by using
the dark channel priors [23], and built a BISR blur kernel dataset. The KGAN
(Kernel-GAN) [5] employs a generative adversarial network (GAN), which is
trained online during the inference stage, to estimate the blur kernel with some
presumed priors, e.g ., Gaussian prior. However, these methods rely heavily on
training data and they do not consider the LR image degradation process. They
often fail to handle images degraded with unseen kernels during inference.

To address the limitations of the above purely data-driven methods, some
deep unfolding methods have been proposed to encode the degradation model
into the learning process. With the input LR image Y, the objective function of
deep unfolding methods can be generally depicted as:

min{K,X}
1

2σ2 ∥(K⊛X)↓s−Y∥22+λXψ(X)+λKϕ(K) (2)

where ψ and ϕ represent the priors on X and K, λX and λK are the balance
parameters, and σ is the noise level. Eq. 2 can be divided into two components,
namely data term (∥(K⊛X)↓s−Y∥22) and prior term (λXψ(X)+λKϕ(K)). Typ-
ical deep unfolding methods include IKC [13] and DAN [20], which employ an
iterative framework to unfold Eq. 2 and perform BISR. Nevertheless, the data
term is difficult to solve under the deep learning framework, and these methods
do not solve the data term explicitly in kernel estimation, which limits their
BISR performance (please refer to Sec. 3.1 for more discussions).

In this work, we propose a novel unfolded deep kernel estimation method,
namely UDKE, by explicitly solving the data term under the deep learning
framework. Based on UDKE, we implement a BISR framework, which, to our
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best knowledge, is the first deep unfolding framework that fully unfolds the ob-
jective function in Eq. 2. UDKE effectively and efficiently encodes the knowledge
of the image degradation model into the DNN architecture and learns priors of
images and blur kernels jointly in an end-to-end manner. By explicitly solv-
ing the objective function of BISR with learned priors during inference, it can
efficiently estimate the unseen complex non-Gaussian blur kernels, surpassing
existing kernel estimation methods by a large margin.

We extensively evaluate the proposed UDKE based BISR framework on mul-
tiple BISR benchmarks as well as real-world data. It records new state-of-the-art
BISR performance, while costs only 1% the inference time of leading online-
learning based methods (e.g ., DIP-FKP [17]).

2 Related Work

Traditional BISR methods. Traditional BISR methods can be categorized
into model-based methods [14,22,26,19,29] and learning based methods [4,10].
The former adopts an image degradation model and image priors to estimate
the desired HR image. He et al . [14] proposed a soft Maximum a Posteriori
based method to alternatively perform blur kernel estimation and HR image
reconstruction. Michaeli et al . [22] proposed a non-parametric BISR model that
exploits the inherent recurrence property of image patches. Shao et al . [26] em-
ployed the convolution consistency prior to estimate the blur kernel. These meth-
ods follow the constraints of the degradation model and have good interpretabil-
ity; however, their BISR performance is usually limited because of the relatively
weak handcrafted priors.

Equipped with a training dataset, learning based methods aim to learn from
it more effective image priors and/or LR-to-HR image mappings. Begin et al . [4]
designed a framework to estimate camera parameters from the LR image, and
estimate the HR image. Corduneanu et al . [10] proposed a spatial-variant BISR
method, which learns a set of linear blur filters from the neighboring pixels.
Liu et al . [19] developed a sparse representation based method for BISR, which
utilizes the image self-similarity prior to learn an over-complete dictionary to
represent the HR image. These methods, by learning from external training
data, exhibit better BISR performance than model-based methods; however,
their performance will drop a lot when the degradation parameters (e.g ., blur
kernel) of test data are much different from that of the training data.

Direct DNN based BISR methods. DNN based methods have become
the mainstream of BISR research, outperforming the traditional learning-based
methods by a large margin. Many DNN based BISR methods directly perform
BISR without performing blur kernel estimation. CinCGAN [34] converts the LR
image with unknown degradation into the bicubic degradation domain and then
performs non-blind SR. Degradation GAN [8] learns the degradation process
implicitly via a GAN to assist SR task. DASR [28] learns abstract representa-
tions of various degradations, and then adopts a DNN to perform the SR task.
Kligler et al . [5] proposed the KGAN method, which trains a GAN on the LR



4 H. Zheng et al.

image to estimate the blur kernel based on Gaussian prior and patch recurrence
property. Liang et al . [17] enhanced KGAN with flow-based prior, which works
well when the blur kernel follows Gaussian assumption. These methods do not
consider the image degradation process and largely rely on the training dataset
in model learning. Their performance would deteriorate when encounter unseen
degradation parameters (e.g ., blur kernel) in inference.

Deep unfolding BISR methods. To address the limitations of direct DNN
based BISR methods, a few deep unfolding BISR methods have been proposed.
These methods share an iterative framework to unfold the objective function in
Eq. 2. By alternatively estimating the blur kernel and the super-resolved image,
they aim to utilize the image degradation model to assist the BISR task. The
early deep unfolding methods [3,25] utilize the maximum a posterior framework
to perform the image denoising task. Zhang et al . [35] proposed a deep unfolding
framework for non-blind SR by using the Half Quadratic Splitting algorithm
to unfold the objective function. For BISR, Gu et al . [13] proposed the IKC
method, which adopts a DNN to iteratively correct the blur kernel estimation in
an implicit dimension-reduced space. Luo et al . [20] proposed a DAN approach,
which iteratively estimates the blur kernel and super-resolved image with the
help of conditional residual block.

However, all the previous unfolding deep methods do not explicitly solve
the data term in kernel estimation, thus they do not fully unfold the objective.
This limits their capability to estimate complex unseen kernels, and they fail
to address the limits of direct DNN based methods properly. Actually, their
performance might be even worse than those direct DNN based methods when
encounter unseen kernels during inference (e.g ., IKC and DAN only work on
Gaussian kernels). We propose an effective and efficient kernel estimation method
by explicitly solving the data term and hence truly unfolding the whole objective
function under the deep learning framework. Our proposed method can estimate
more complex unseen non-Gaussian blur kernels in inference.

3 Methodology

3.1 Problems of previous deep unfolding BISR methods

As described in Eq. 2, the objective function of deep unfolding methods can be
divided into the data term (∥(K⊛X)↓s−Y∥22) and the prior term (λXψ(X)+
λKϕ(K)). According to [35], the data term enforces physical constraints on the
image degradation process, and it should be solved explicitly to enable an un-
folding method to estimate unseen (different from those in training) blur kernels
during inference. However, all the previous deep unfolding methods [13,20] em-
ploy DNNs to estimate the blur kernel implicitly without solving the data term
explicitly. Therefore, they do not fully unfold the objective function to utilize
the information embedded in the image degradation model. As a result, most
of these methods simply assume Gaussian blur kernels in BISR and they have
limited generalization capability to more complex non-Gaussian kernels.



Unfolded Deep Kernel Estimation for Blind Image Super-resolution 5

The major reason that the previous methods do not explicitly unfold the
data term lies in that the available solutions, which are developed in traditional
unfolding methods, are hard to be incorporated into the deep learning frame-
work. In traditional methods, the data term can be solved by either numerical
methods or analytical methods. The numerical methods such as the Alternating
Direction Method of Multipliers [7] solve the data term iteratively. Such iter-
ative methods work well in traditional unsupervised BISR methods; however,
they are too time-consuming to use in deep learning framework, which requires
training on a large amount of data. On the other hand, the analytical methods
such as the Least Squares Method (LSM)[1] can provide an analytical solution
of the data term. However, the image-to-column (im2col) operation required in
LSM would increase the memory-overhead by thousands of times, which is not
acceptable in deep learning framework. One way to waive the im2col operation is
to transform the original problem into the frequency domain by the Fast Fourier
Transform. Such methods have been used in the non-blind SR task [35], where
the blur kernel is known. In BISR, however, the support set of the unknown
blur kernels is much smaller than that of images, making the explicit solution in
frequency domain hard to achieve.

In this work, we investigate deeply this challenging problem, and propose
an effective yet efficient method to explicitly solve the data term with minimal
memory overhead under the deep learning framework.

3.2 Unfolded deep kernel estimation based BISR framework

The framework of our proposed unfolded deep kernel estimation (UDKE) based
BISR method is shown in Fig. 1. Suppose we are given N training triplets
{Yi,Y

gt
i ,Kgt

i }, where Yi is the ith observed LR image, and Ygt
i and Kgt

i are
the ground-truth HR image and ground-truth blur kernel, respectively. In order
to accommodate the unfolding objective in Eq. 2 into an end-to-end training
framework, we rewrite it into a bi-level optimization problem as follows:

min{θψ,θϕ}
1
N

∑N
i=1LX(Xi,Y

gt
i )+γLK(Ki,K

gt
i ) (3a)

s.t. {Ki,Xi}=argminK,X
1

2σ2
i
∥(K⊛X)↓s−Yi∥22+λKϕ(K)+λXψ(X) (3b)

where Xi and Ki are the predicted HR image and blur kernel; LX(·,·) and
LK(·,·) are the loss functions, γ is a trade-off parameter; θψ and θϕ denote the
parameters of deep priors (i.e., DNNs) ψ and ϕ.

In the above bi-level optimization problem, Eq. 3a describes its backward
pass, where the parameters (of DNNs) θψ and θϕ implicitly embed the deep
priors and they are updated based on the losses LX and LK. Eq. 3b describes
the forward pass of the framework, which takes the LR observationYi as input to
estimate the blur kernel Ki and the HR image Xi with the learned deep priors.
For the convenience of expression, we omit the subscript “i” in the following
development. Eq. 3b can be split into the following two sub-problems by the
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Fig. 1: The overall architecture of our UDKE based BISR framework.

Half Quadratic Splitting (HQS) algorithm:

min{X,X′}
1

2σ2 ∥(K⊛X′)↓s−Y∥22+λXψ(X)+µX

2 ∥X−X′∥22 (4a)

min{K,K′}
1

2σ2 ∥(K′⊛X)↓s−Y∥22+λKϕ(K)+µK

2 ∥K−K′∥22 (4b)

where X′ and K′ are auxiliary variables; µX and µK are penalty parameters.

Eqs. 4a and 4b can be solved iteratively. Particularly, in the t-th iteration we
can solve the auxiliary variables K′

(t) and X′
(t) with analytical solutions, while

the two mapping DNNs, denoted by NetK and NetX, map the pre-priors K′
(t)

and X′
(t) to post-priors K(t) and X(t) with the implicitly embedded priors:

K′
(t)=SolveK(Y,K(t-1),X(t-1),αK) (5a)

=argminK⋆
1
2∥(K

⋆⊛X(t-1))↓s−Y∥22+αK

2 ∥K⋆−K(t-1)∥22
K(t)=NetK(K′

(t),βK)=argminK⋆ ϕ(K⋆)+βK

2 ∥K′
(t)−K⋆∥22 (5b)

X′
(t)=SolveX(Y,K(t),X(t-1),αX) (5c)

=argminX⋆
1
2∥(K(t)⊛X⋆)↓s−Y∥22+αX

2 ∥X⋆−X(t-1)∥22
X(t)=NetX(X′

(t),βX)=argminX⋆ ψ(X⋆)+βX

2 ∥X′
(t)−X⋆∥22 (5d)

where {αK,αX,,βKβX}={µKσ2,µXσ2,µK

λK
,µX

λX
}.

The architecture of our UKDE based BISR framework is built from the un-
folded equations Eqs. 5a∼5d. It has two branches. The kernel estimation branch
corresponds to Eqs. 5a∼5b and is represented as the K-stream in Fig. 1, which
will be discussed in Section. 3.3. Eqs. 5c∼5d super-resolve the HR image with
the estimated kernel, and they are represented as the X-stream in Fig. 1, which
will be discussed in Section 3.4.

3.3 K-stream: unfolded explicit kernel estimation

In this section, we elaborate in detail the proposed novel kernel estimation
method, which corresponds to the K-stream in Fig. 1. The first step is to explic-
itly solve Eq. 5a (data term), which is represented as SolveK in Fig. 1. It takes
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Y and the estimations of K and X in previous stage as inputs, then explicitly
solves Eq. 5a to update K′. As the dimension of K is much lower than that of X,
this system is over-determined and can be solved by the LSM method [1]. Denote
by Ua the im2col operator with block size a, and by P a−1

2
the circular padding

operator with padding size of a−1
2 . Let X=Uk(P a−1

2
(X)) and Y=Uk(Y), then

Eq. 5a can be written as:

argmink⋆
1
2∥MsXk−Y∥22+αK

2 ∥k⋆−k∥22 (6)

where k⋆=vec(K⋆), k=vec(K), vec(·) is the vectorization operator, and Ms is
the matrix representation of the downsampling operator ↓s with scale factor s.

By taking the derivative of Eq. 6 w.r.t. k⋆ and letting the derivative be zero,
we can obtain the closed-form solution of K′ as follows:

K′=vec−1{(XTMT
s MsX+αKI)−1(XTMT

s Y+αKk)} (7)

where vec−1(·) reverses the vectorization operator vec(·). However, X has a size of
C×h×w×k×k, which is much larger than X of size C×h×w, where C, h, w, and
k are channel number, height, width and blur kernel size of the super-resolved
image. It is too memory-consuming to directly compute Eq. 7 in practice. In the
rest of this section, we will elaborate the proposed memory-efficient solution to
tackle this problem.

It can be seen that the size of XTMT
s MsX is C×k×k×k×k and k≪h, k≪w.

We propose an efficient solution to calculate XTMT
s MsX from X without storing

X or Y, reducing significantly the memory consumption. (Note that XTMT
s Y

can be regarded as a special case of XTMT
s MsX , where Y=MsX). Denote by

Uk the im2col operator with block size k, and by P k−1
2

the circular padding

operator with padding size k−1
2 . The element at (x,y) in XTMT

s MsX can be
calculated through dilated convolution between the xth and the yth im2col blocks
in Uk◦P k−1

2
(X), where ◦ is the notation of function composition.

Unfortunately, calculating h×w elements in XTMT
s MsX requires h×w con-

volution operations, and each of them is based on a unique pair of kernel and
feature maps, which is too time-consuming. Thus, we have to convert them
into parallel operations to utilize the modern parallel computing library such as
CUDA. This can be done by convolving Pk−1(X) with a series of dilated feature
maps, each has a unique dilation pattern. Generally speaking, with the scale
factor s, there are s2 dilation patterns. We use 2-dimensional indices to arrange
these dilated feature maps, denoted by X̂(i,j), by using the following rule:

X̂(i,j) :

{
X̂

(i,j)
(x,y)=X(x,y) x%i=0 & y%j=0

X̂
(i,j)
(x,y)=0 otherwise

(8)

where % is the modulo operator, i={0,1...s−1} and j={0,1...s−1}. Convolution
operations between Pk−1(X) and X̂(i,j) result in s2 feature maps. Then we merge
them into a single feature map, denoted by F, with the help of a mapping
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function f . f and F are defined as follows:

f :(x,y)−→((⌊k−1

2
⌋−x)%s,(⌊k−1

2
⌋−y)%s) (9a)

F:F(x,y)=(X̂f(x,y)⊛Pk−1(X))(x,y) (9b)

Eq. 9 costs s2 operations to solve, which is still time-consuming when s is
large. With the help of pixel-shuffle operation, Eq. 9 can be further reduced into
a constant number of operations as follows:

g :(x,y)−→x×s+y (10a)

F=S-1
s ◦Mg◦f◦g−1{Ss(X)⊛Ss◦Pk-1(X)} (10b)

where g is a mapping function, Ss and S−1
s are the pixel shuffle/un-shuffle

operations with scale factor s, and M reorders channels of a matrix according
to mapping g◦f◦g−1. The elements in the xth row of XTMT

s MsX will reside in
the xth im2col block of Uk(F). Finally, X

TMT
s MsX can be computed as:

XTMT
s MsX=R◦Uk(F) (11)

where R(A) flips each row of matrix A.

The memory-efficient solution described in Eqs. 8∼11 can reduce the memory
consumption of solving blur kernels by a factor of h×w

k×k . For example, to super-
resolve an image to 2K resolution (2048×1024) with k=11, it can save over
17000× memory overhead. The second step in the K-stream is to solve Eq. 5b
to map pre-prior K′ to post-prior K, which is done by a DNN (NetK in Fig. 1).
The NetK consists of 3 blocks, each of which is composed of two Convolutional
(Conv) layers and one LeakyReLU layer. All Conv layers have 16 channels and
all LeakyReLU layers have a negative slope of 0.01. A trailing ReLU layer is
added to restrict the output estimation to be positive. The architecture graph
is provided in the Supplementary File.

3.4 X-stream: super-resolved image estimation

The X-stream solves Eqs. 5c∼5d to estimate the super-resolved image. Given the
blur kernel estimated by UDKE, it reduces into a non-blind SR problem, which
can be easily done in two steps. The first step takes Y and the estimations
of K and X as inputs, then solves Eq. 5c to update X′. According to [35],
the closed-form solution of X′ in Eq. 5c can be derived by the Fast Fourier
Transform (FFT):

X′= 1
αX

F−1{Z−K⊙(
(K̄ ⊙Z)

αX+(K̄ ⊙K)
)} (12)

where F (·) and F−1(·) denote the 2D FFT and its inverse, K= F (K), X ⋆=
F (X⋆), Y= F (Y), X= F (X), Z=K◦Y+αXX , K̄ is the complex conjugate of
K, ⊙ and ·

· are the 2D Hadamard product and division, respectively.
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Algorithm 1: Overall unfolding process of our UDKE based BISR framework

Input : LR image Y, stages no. T , kernel size k, scale factor s, noise level σ
Output : Predicted HR image Xpred, predicted blur kernel Kpred

X0=bics(Y), K0=
1
k2 ;

for t=1,...,T do{
αX(t),αK(t),βX(t),βK(t)

}
=HyperNet(t)(s,σ);

K′
(t)=SolveK

(
Y,K(t-1),X(t-1),αK(t)

)
;

K(t)=NetK
(
K′

(t),βK(t)

)
;

X′
(t)=SolveX

(
Y,K(t),X(t-1),αX(t)

)
;

X(t)=NetX
(
X′

(t),βX(t)

)
;

Xpred=XT ;

Kpred=KT ;

The second step solves Eq. 5d and map pre-prior X′ to post-prior X. From
the Bayesian perspective [35], this step can be exactly interpreted as a denoising
problem and can be solved by a DNN NetX. For efficiency consideration, we
adopt the U-Net [24] as the DNN following previous non-blind SR method [35].
NetX consists of 7 blocks. The first 3 blocks downsample the feature maps
through strided convolution, and the last 3 blocks upsample the feature maps
by transposed convolution. Each block consists of 4 residual units, while each of
them consists of 2 Conv layers with ReLU and a skip connection. The channel
numbers of Conv layers in the first 4 blocks are 64, 128, 256, 512, respectively.
The architecture graph is provided in the Supplementary File.

3.5 Summary of the unfolding process

The K-stream and X-stream work alternatively to estimate the blur kernel K
and HR image X for T stages. The determination of T will be discussed in
Section 4.1. In the first stage, the input X0 is initialized by bics(Y), where bics
is the bicubic upsampling operation with scale factor s, while all the elements of
K0 are initialized to 1

k2 . For each stage, a tiny 2-layer fully connected network,
called HypaNet, which takes σ and s as inputs, is introduced to predict the
hyperparameters. The architecture graph of HypaNet and is provided in the
Supplementary File. Algorithm 1 depicts the overall unfolding process.

4 Experiments

4.1 Implementation details

Training data and kernel pool. Following previous BISR works [35,20,28],
we use the DIV2K [2] and Flickr2K [18] datasets to train our UDKE based
framework. The ground truth images Ygt are obtained by randomly cropping
patches of size 128×128 from the original images, and the LR images Y are
obtained by randomly selecting kernels from the DEPD-training kernel pool [40]
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Table 1: 2× BISR results (PSNR/SSIM). Best results are in red.

Datasets Set5 BSD100 Urban100
σ 0 2.55 7.65 0 2.55 7.65 0 2.55 7.65

Bicubic 26.56/.8196 26.53/.8111 25.87/.7569 24.95/.7071 24.79/.6402 24.49/.6402 22.18/.7032 22.07/.6895 21.86/.6327

RCAN 27.35/.8578 27.04/.8153 24.73/.6113 25.70/.7620 25.29/.7170 23.69/.5345 23.14/.7650 22.84/.7192 21.75/.5442

ZSSR 27.03/.8803 26.53/.8143 25.41/.5840 25.31/.7498 25.10/.7122 23.29/.5449 22.66/.7443 22.34/.7121 21.89/.5579

DASR 27.48/.8788 27.00/.8188 24.95/.6310 25.82/.7624 25.27/.7143 23.81/.5442 23.37/.7803 22.80/.7181 21.86/.5611

KGAN 25.70/.8448 24.56/.6748 19.50/.3765 24.02/.7540 22.67/.5776 18.56/.3149 21.85/.7575 21.14/.6007 18.02/.3706

KFKP 17.28/.5279 14.55/.2766 12.25/.1829 21.16/.6608 19.79/.4934 16.27/.2890 19.56/.6725 18.61/.5361 16.02/.3260

DFKP 27.42/.8795 26.16/.7633 21.44/.4464 25.60/.7968 24.79/.6925 19.99/.3687 22.91/.7860 22.63/.7155 19.76/.4414

IKC 27.02/.8807 26.36/.8095 24.81/.6199 25.42/.8029 25.26/.7141 23.75/.5412 23.28/.8030 22.86/.7168 21.79/.553̇9

DAN 27.40/.8705 27.01/.8163 24.93/.6277 25.70/.7620 25.29/.7179 23.79/.5438 23.14/.7647 22.84/.7201 21.79/.5500

Ours 30.50/.8964 30.11/.8786 28.93/.8416 27.68/.8282 27.29/.8017 26.46/.7516 25.51/.8341 25.19/.8138 24.57/.7748

UBound 34.65/.9424 33.01/.9145 31.07/.9004 30.02/.8840 29.11/.8754 27.94/.8433 28.01/.8468 27.45/.8371 25.87/.8210

Table 2: 4× BISR results (PSNR/SSIM). Best results are in red.

Datasets Set5 BSD100 Urban100
σ 0 2.55 7.65 0 2.55 7.65 0 2.55 7.65

Bicubic 23.05/.6844 22.93/.6782 22.70/.6335 22.60/.5680 22.58/.5622 22.35/.5231 19.70/.5524 19.69/.5452 19.56/.5043

RCAN 24.01/.7196 23.87/.7132 21.78/.4960 23.11/.5969 22.50/.5740 20.33/.4853 19.88/.5849 19.48/.5742 19.00/.4513

ZSSR 24.33/.7369 22.88/.6563 22.50/.5063 23.03/.6070 22.79/.5933 20.21/.5024 20.95/.6048 20.19/.5824 19.37/.4769

DASR 24.33/.7243 24.16/.7008 22.31/.5321 23.23/.6490 23.12/.6171 21.14/.5192 21.43/.6360 21.32/.6031 19.43/.4902

KGAN 22.65/.6613 22.03/.6325 17.4/.3820 22.12/.6032 21.76/.5832 17.65/.3326 18.23/.6032 17.65/.4723 14.25/.3027

KFKP 15.32/.4859 14.21/.3332 12.75/.2199 18.23/.3765 17.65/.3321 15.64/.2818 17.64/.4083 17.53/.3125 15.13/.3022

DFKP 24.15/.7318 23.83/.6927 19.34/.4467 23.12/.6530 22.88/.6311 18.21/.3831 20.23/.6320 20.13/.5923 18.02/.3445

IKC 24.03/.7152 22.96/.6938 21.39/.5062 23.93/.6123 23.11/.6035 21.12/.4767 21.33/.6265 21.14/.6125 19.34/.4532

DAN 24.25/.7165 24.13/.6817 22.14/.5157 23.14/.6254 23.01/.5963 20.98/.4943 21.10/.6030 21.01/.5977 19.29/.4433

Ours 27.33/.8118 27.22/.8048 26.51/.7638 24.99/.6813 24.92/.6738 24.46/.6412 22.47/.6937 22.42/.6872 22.13/.6589

UBound 31.01/.8810 30.43/.8793 29.43/.8603 26.85/.7543 26.21/.7432 25.92/.7136 24.98/.7632 24.39/.7412 23.88/.6960

and applying the degradation model in Eq. 1. The DEPD kernel pool adopts dark
channel priors [23] to analyze BISR kernels from real-world LR images captured
by low-end camera phones. Specifically, the DEPD-training subset consists of
1,000 BISR kernels analyzed from photos captured by Blackberry Passport phone
and Sony Xperia Z. The DEPD-evaluation subset consists of 300 BISR kernels
analyzed from photos captured by iPhone 3GS.

Training details. The L1 loss is used as the loss function for each stage of
UDKE. Following [39], the weight on the loss of the last stage is set as 1, and the
weights on all the other stages are set as 1

T−1 . The Adam optimizer [16] is used
for updating the parameters of NetK and NetX. The batch size is 32. We train
the network for 105 iterations. The learning rate starts from 10-4 and decays
by a factor of 0.5 for every 24 iterations. In order to speed up and stabilize the
training process, we first train a 1-stage model and reload its weights into the
T -stage model for fine-tuning. All the T stages share the same parameters. The
size k for BISR kernel is set to 11 and the scale factor s is set to {2,3,4}, following
previous BISR methods [35,20,28]. For each scale factor, we train a model for
all noise levels, which are set to {0,2.55,7.65} as in [35].
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Fig. 2: Ablation study on λ and T .

Table 3: Kernel estimation results
(PSNR). Best results are in red.

Scale Datasets Set5 BSD100 Urban100
σ 0 2.55 7.65 0 2.55 7.65 0 2.55 7.65

×2

KGAN 41.0 40.9 39.2 40.4 40.2 39.7 40.3 40.2 39.9
KFKP 37.8 38.0 37.5 38.7 38.9 38.5 38.6 38.7 38.5
DFKP 39.4 39.6 39.4 39.0 39.3 38.9 38.6 38.8 38.5
Ours 51.0 49.7 48.9 49.3 47.2 47.3 48.8 47.7 47.0

×4

KGAN 40.1 39.1 37.1 39.0 38.2 37.2 38.7 37.1 36.9
KFKP 37.7 37.2 36.8 37.3 36.4 36.1 37.0 36.0 35.8
DFKP 39.1 38.4 37.7 37.8 37.8 37.1 37.1 36.8 36.2
Ours 45.1 45.5 42.2 43.8 43.6 43.5 44.4 44.7 44.0

The selection of λ and T . There are mainly two parameters to set in our
method, the trade-off parameter λ and the no. of stages T . We perform ablation
studies to select them. The ablation study is done on the Set5 [6] dataset with
s=2 and σ=0. The PSNR results w.r.t. λ and T are illustrated in Fig. 2. It can
be seen that the PSNR index increases with the increase of T , and the highest
PSNR is achieved when λ=10. However, the improvement becomes minor when
T=6. Hence, we set λ=10 and T=6 in all the following experiments.

4.2 Comparison with state-of-the-arts

In this section, we compare the proposed UDKE based framework with state-of-
the-art BISR methods. Three sets of experiments are conducted to comprehen-
sively evaluate UDKE. First, we evaluate UDKE by using the DEPD-evaluation
kernel pool, which is more complex than the widely used Gaussian kernels and
more similar to the degradation in real-world images [40]. Second, we compare
UDKE, which does not impose presumptions on blur kernels, with the methods
that presume Gaussian blur kernels, by using just Gaussian kernels. Third, we
evaluate UDKE on real-world images whose degradation kernels can be more
complex than Gaussian kernels and those in the DEPD-evaluation kernel pool.

Experiments with DEPD-evaluation kernel pool. Following prior works
[17,20], the widely used Set5, BSD100 [21] and Urban100 [15] datasets are used
in the experiments. Testing LR images are obtained by applying randomly se-
lected BISR kernels from the DEPD-evaluation pool to HR images according to
the degradation process described in Eq. 1. We compare our UDKE based frame-
work with bicubic interpolation, SOTA non-blind SR method RCAN [38], SOTA
direct DNN based BISR methods, including ZSSR [27], DASR [28], KGAN [5],
DFKP (DIP-FKP) [17] and KFKP (KernelGAN-FKP) [17], and SOTA deep
unfolding BISR methods, including IKC [13] and DAN [20]. Note that some
methods (e.g ., KernelNet [32]) are inapplicable for comparison. This is because
that their source code is not disclosed and we cannot reproduce them; and they
reported performance on non-standard testing sets so that we cannot compare
with the reported results either.

The experimental results of ×2 and ×4 BISR are shown in Tables 1∼2,
respectively. The experimental results of ×3 BISR are provided in the Sup-
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plementary File. We also provide an “upper bound” (UBound) of the BISR
methods, which is obtained by feeding the ground truth kernel to the non-blind
SISR method USRNet [35], yielding a non-blind “upper bound” as a reference
for evaluating those blind BISR methods. Besides the PSNR/SSIM of the re-
constructed image, for those BISR methods that estimate the blur kernels (i.e.,
KGAN [5], DFKP [17], KFKP [17] and our UDKE), we also compute the PSNR
of the estimated kernel (Kernel-PSNR), and list the results in Table 3.

It can be seen that UDKE based framework achieves the best PSNR, SSIM
and Kernel-PSNR results under all experiment settings, significantly outper-
forming the competing methods. Both the direct DNN based methods (ZSSR,
DASR, KGAN, KFKP, DFKP) and deep unfolding methods (IKC and DAN) do
not surpass the non-blind method RCAN. This is mainly because these methods
cannot encode effectively the information of the degradation process in their
models, and hence they can not estimate the HR images with unseen degrada-
tion parameters during inference. In contrast, our proposed UDKE can estimate
the degradation kernel very well (please see the Kernel-PSNR in Table 3) and
consequently reproduce the original image with better quality. To further demon-
strate the performance of UDKE, we also build several testing sets, each of them
is built with a specific kernel from the DEPD-evaluation pool. The results are
provided in the Supplementary File due to the limit of space.

Fig. 3 visualizes the BISR results on an image by the competing methods.
It can be seen that the image reconstructed by UDKE has the best visual qual-
ity with sharp edges and rich textures. Other methods generate blurry results
as they fail to well estimate and exploit the BISR kernel information. KFKP,
which enforces strong Gaussian priors on kernel estimation and employs unstable
adversarial training, results in distorted image textures due to kernel mismatch-
ing. Fig. 4 visualizes the predicted kernels by those BISR methods with explicit
kernel estimation. It can be seen that only UDKE predicts the kernel with high
fidelity, while others yield unreliable results because they generally impose the
Gaussian-shape assumption on the kernels. More visualization results can be
found in the Supplementary File.

Experiments with Gaussian kernels. Although UDKE is not designed
and trained for Gaussian kernel degradation, we also test its effectiveness on
Gaussian kernels in comparison with those BISR methods designed and trained
for Gaussian blur kernels, i.e., DAN [20], KGAN [5], KFKP [17], and DFKP [17].
The Gaussian kernels are obtained by the process adopted in Gaussian BISR
methods [5,17], which randomly samples the length and rotation angle to gen-
erate Gaussian kernels. The experiment is done on BSD100 set. Table 4 shows
the BISR results on anisotropic Gaussian degradation. The isotropic Gaussian
BISR results are provided in the Supplementary File. One can see that UDKE
achieves competitive results with those Gaussian BISR methods but without
hardcoding any Gaussian priors. With the increase of noise level, it can even
surpass DFKP, showing better robustness to noise.
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(a) Ground truth (b) RCAN
(26.83dB/.9001)

(c) ZSSR
(26.86dB/.8996)

(d) IKC
(27.04dB/.9295)

(e) DAN
(27.34dB/.9167)

(f) DASR
(27.42dB/.9101)

(g) KGAN
(24.94dB/.8865)

(h) KFKP
(14.20dB/.5833)

(i) DFKP
(26.00dB/.9040)

(j) UDKE
(30.42dB/.9393)

Fig. 3: Results on “208001” in BSD100 with s=2 and σ=0 (PSNR/SSIM).

(a) Ground truth (b) KGAN
(43.7dB)

(c) KFKP
(39.6dB)

(d) DFKP
(43.3dB)

(e) UDKE
(47.6dB)

Fig. 4: Kernel estimation results on “208001” in BSD100 with s=2 and σ=0.

(a) LR image (b) RCAN (c) IKC (d) DAN (e) DASR

(f) KFKP (g) DFKP (h) BSRGAN (i) RESRGAN (j) UDKE

Fig. 5: Result on a real-world image (better viewed on screen).
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Table 4: Anisotropic Gaussian BISR results
(PSNR/SSIM/Kernel-PSNR).

s σ=0 σ=2.55 σ=7.65

2

DAN 28.12/.8557/- 27.13/.8028/- 26.35/.7443/-
KGAN 26.33/.7751/44.3 26.01/.7432/43.8 25.79/.7026/42.1
KFKP 27.62/.8512/49.1 27.11/.8010/46.9 26.34/.7450/45.2
DFKP 28.42/.8863/49.8 27.32/.8218/47.2 26.71/.7570/45.8
Ours 27.56/.8112/48.5 27.10/.8003/46.9 26.73/.7700/46.1

4

DAN 24.98/.6813/- 24.42/.6348/- 23.01/.5575/-
KGAN 23.97/.6211/43.2 23.70/.5987/42.1 23.01/.5575/41.8
KFKP 24.87/.6612/44.2 24.49/.6353/43.0 24.01/.5801/42.7
DFKP 25.47/.7233/46.4 24.62/.6891/44.0 24.10/.6013/44.0
Ours 24.89/.6612/44.3 24.52/.6348/43.1 24.32/.6187/44.0

Fig. 6: Inference time v.s. PSNR.

Experiments on real-world images. We further test UDKE on real-world
LR images whose degradation kernels can be more complex than Gaussian as
well as the DEPD-evaluation pool. We add two state-of-the-art real-world SISR
methods, i.e., RESRGAN (Real-ESRGAN) [31] and BSRGAN [36], for more
comprehensive comparison. The results are shown in Fig. 5. It can be seen that
UDKE produces the best result, with not only superior perceptual quality but
also more accurate fidelity (see the ground tiles). KFKP generates many noisy
artifacts and distorted edges, while RESRGAN generates false patterns on the
ground tiles. All the other competing methods output blurry results. This ex-
periment demonstrates the robust kernel estimation capability of UDKE in real-
world scenarios. More examples can be found in the Supplementary File.

Inference time. We further compare the inference time of UDKE and the
competing methods. The experiments are conducted on Set5 (s=2 and σ=0)
with a GTX 2080Ti GPU. The results are shown in Fig. 6. It can be seen that
UDKE is slightly slower than DASR and has a similar speed to RCAN and IKC.
It is over ×100 times faster than the leading online training based BISR method
DFKP, which trains a deep model during the inference, and ×1000 times faster
than ZSSR and KGAN. Meanwhile, UDKE achieves significantly higher PSNR
(about 3dB) than all competing methods.

5 Conclusion

We proposed a novel unfolded deep kernel estimation method, namely UDKE,
to explicitly solve the data term of the unfolding objective function for effective
BISR. Equipped with the designed memory-efficient algorithm, UDKE is free of
the im2col operation required in traditional Least Squares Method and hence
saves over 17000× memory overhead, providing an efficient solution to explicitly
solve the data term under the deep learning framework. UDKE addresses the
challenging BISR problem by efficiently utilizing the information of degradation
model during inference. Extensive experiments on both synthetic and real-world
images validated that UDKE could faithfully predict non-Gaussian blur kernels,
and reproduce high quality images with sharp structures and rich textures, sur-
passing existing BISR methods by a large margin. Meanwhile, UDKE has good
efficiency, making it an attractive choice for BISR in practice.
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