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A Content

The content of this supplementary material involves:

– Synthetic noise for auxiliary-LR in Sec. B.
– Visual results of auxiliary-LR in Sec. C.
– Network structure of restoration module in Sec. D.
– Sliced Wasserstein (SW) loss in Sec. E.
– Comparison of #FLOPs in Sec. F.
– Evaluation of generalization performance on other cameras in Sec. G.
– Additional visual comparison on Nikon camera and CameraFusion dataset

in Sec. H.

B Synthetic Noise for Auxiliary-LR

Noise in real-world images is common, but complex and various. In order to
bridge the gap between auxiliary-LR and LR as much as possible, we need to add
noise to the output of the auxiliary-LR generator network that only simulates
the blurring and down-sampling processes. Gaussian noise is a natural choice,
but much different from real-world image noise. Inspired by BSRGAN [11], we
also add JPEG compression noise. The variance of Gaussian noise is uniformly
sampled from 5/255 to 30/255, and the JPEG quality factor is uniformly cho-
sen from 60 to 95. Simultaneously, the order of adding three kinds of noise is
stochastic.

C Visual Results of Auxiliary-LR

Since the noise type and intensity of auxiliary-LR are random, for the conve-
nience of display and comparison, we show the auxiliary-LR images without
adding synthetic noise in Fig. A(b). And the corresponding GT and LR images
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(a) GT (b) Auxiliary-LR with no noise (c) LR

Fig.A: Visual Results of auxiliary-LR with no noise. The auxiliary-LR has sim-
ilar contents as LR and it is aligned with GT.
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(a) Structure of the restoration model

Short-focus

Telephoto

(b) Color inconsistency

Fig. B: Structure of the restoration model and color inconsistency. (a) Detailed
structure of the restoration model. ‘RB’ denotes the residual block. (b) Color
inconsistency between short-focus and telephoto images.

are shown in Fig. A(a) and Fig. A(c), respectively. The red lines and arrows
in the same row are in the same position relative to the image. It can be seen
that the auxiliary-LR has similar contents as LR and it is aligned with GT. It
indicates that the function of the auxiliary-LR generator is guaranteed.
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Algorithm A Pseudocode of SW loss

Require: U ∈ R
C×H×W : VGG features of output image; V ∈ R

C×H×W : VGG fea-
tures of target image; M ∈ R

C
′
×C : random projection matrix;

Ensure: LSW(U,V): the value of SW loss;
1: flatten features U and V to Uf (∈ R

C×HW ) and Vf (∈ R
C×HW ), respectively;

2: project the features onto C′ directions: Up = MUf , Vp = MVf ;
3: sort projections for each direction: Us = Sort(Up, dim=1), Vs = Sort(Vp,

dim=1);
4: LSW(U,V) = ∥Us −Vs∥1

Table A: Quantitative results of SelfSZSR using different loss terms.

Loss Terms PSNR↑ LPIPS↓

ℓ1 28.93 0.308
ℓ1 + SW 28.67 0.219
ℓ1 + Perceptual + Adversarial 28.45 0.216

D Restoration Module

Fig. B(a) shows the detailed structure of the restoration module. First, the
aligned LR and aligned Ref features are concatenated and fed into the back-
bone, which consists of 16 residual blocks [4]. Then the concatenated features
are input into an encoder for generating vectors that modulate the features of
each residual block. Simultaneously, the original Ref image and the central area
of the LR image are utilized to enrich the input features of the encoder for better
modulation. This modulation can also be regarded as a kind of channel attention
on the features of residual block. And it is beneficial to relieve the color incon-
sistency (see Fig. B(b)) between the short focal length and telephoto images in
the real world.

E Sliced Wasserstein Loss

The algorithm of SW loss is given in Alg. A. We first obtain the 1-dimensional
representation of 2-dimensional VGG [6] features through random linear projec-
tion. Then we calculate the Wasserstein distance between the output and the
target 1-dimensional probability distributions, which is defined as the element-
wise ℓ1 distance over sorted 1-dimensional distributions.

Most reference-based image SR (RefSR) methods [13,10,5,2] adopt the per-
ceptual loss and adversarial loss [1] for more realistic results. For a fair com-
parison, here we also train proposed model (SelfDZSR) using a combination of
ℓ1 reconstruction loss, perceptual loss and adversarial loss based on Relativistic
GAN [3]. The quantitative results are shown in Table A. It can be seen that the
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Table B: #FLOPs comparison of SISR and RefSR methods. The #FLOPs is
measured under the setting of ×4 super-resolving LR image to 1280× 720 reso-
lution. For RefSR methods, the Ref image has the same size with LR.

Method #FLOPs (G)

SISR

EDSR [25] 5792
RCAN [52] 1838
CDC [42] 1626

BSRGAN [48] 2068
Real-ESRGAN [39] 2068

RefSR

SRNTT [53] 3568
TTSR [47] 2468

C2-Matching [19] 1968
MASA [27] 1984
DCSR [38] 836

Ours SelfDZSR 384

model trained by SW loss obtains a 0.22 dB PSNR gain than that by adversar-
ial loss, while the gap of LPIPS metric is small. Nevertheless, benefiting from
the proposed implicit alignment and better utilization of Ref information, the
SelfDZSR model by adversarial loss still achieves better performance than other
RefSR methods.

F Comparison of #FLOPs

The cost of calculating similarity between LR and Ref occupies a large part of the
computational cost of previous RefSR methods. We calculate cosine similarity
between ×4 down-sampled Ref and ×4 down-sampled LR features, and find that
its performance is close to that of computing similarity at original image size.
By virtue of the faster similarity calculation and more lightweight restoration
model, our method has lower FLOPs in comparison to both SISR and RefSR
methods, as shown in Table B.

G Evaluation of Generalization Performance on Other
Cameras

Here we evaluate the generalization performance of models on other four cameras
(i.e., Canon, Olympus, Panasonic and Sony) from DRealSR dataset [9]. We
compare results with SISR (i.e., EDSR [4], RCAN [12], CDC [9], BSRGAN [11]
and Real-ESRGAN [8]) and RefSR (i.e., SRNTT [13], TTSR [10], MASA [5],
C2-Matching [2] and DCSR [7]) methods. Among them, the results of BSRGAN
and Real-ESRGAN are generated via the officially released model while other
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methods are trained on Nikon camera images, as mentioned in the main text of
the submission.

Tables C∼F show the quantitative results on four cameras, respectively. Our
proposed model (SelfDZSR) achieves better results than most other methods,
especially on Full-Image and LPIPS metric. The visual comparison is carried out
on the methods that are trained not only with ℓ1 (or ℓ2) loss. The comparisons
on four cameras can be seen in Fig. C∼F, respectively.

H Additional Visual Comparison on Nikon Camera and
CameraFusion Dataset

The visual comparison is carried out on the methods that are trained not only
with ℓ1 (or ℓ2) loss. In Fig. G, we show more qualitative comparison on Nikon
camera images [9]. The visual comparison on CameraFusion dataset [7] can be
seen in Fig. H. The resolution of full LR images from the two test sets is 1∼2K,
so we select a patch for comparison.
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Table C: Quantitative results on Canon camera with 17 images. Best results
are highlighted by red. The models trained only with ℓ1 (or ℓ2) loss are marked
in gray. RefSR† represents that the RefSR methods are trained in our self-
supervised learning manner.

Method
# Param

(M)
Full-Image

PSNR↑ / SSIM↑ / LPIPS↓
Corner-Image

PSNR↑ / SSIM↑ / LPIPS↓

SISR

EDSR [4] 43.1 26.52 / 0.8399 / 0.342 26.55 / 0.8383 / 0.342
RCAN [12] 15.6 26.69 / 0.8413 / 0.346 26.73 / 0.8404 / 0.347
CDC [9] 39.9 24.85 / 0.8378 / 0.384 24.90 / 0.8366 / 0.385
BSRGAN [11] 16.7 25.39 / 0.8031 / 0.268 25.43 / 0.8017 / 0.268
Real-ESRGAN [8] 16.7 24.64 / 0.8010 / 0.275 24.68 / 0.7988 / 0.276

RefSR†

SRNTT-ℓ2 [13] 5.5 26.22 / 0.8390 / 0.348 26.24 / 0.8378 / 0.351
SRNTT [13] 5.5 26.25 / 0.8268 / 0.295 26.28 / 0.8258 / 0.293
TTSR-ℓ1 [10] 7.3 23.97 / 0.8280 / 0.374 23.93 / 0.8259 / 0.375
TTSR [10] 7.3 23.75 / 0.7719 / 0.340 23.68 / 0.7695 / 0.338
C2-Matching-ℓ1 [2] 8.9 25.64 / 0.8383 / 0.357 25.60 / 0.8373 / 0.358
C2-Matching [2] 8.9 24.75 / 0.8180 / 0.329 24.72 / 0.8171 / 0.328
MASA-ℓ1 [5] 4.0 26.54 / 0.8398 / 0.338 26.58 / 0.8390 / 0.339
MASA [5] 4.0 27.19 / 0.8006 / 0.306 27.24 / 0.7994 / 0.305
DCSR-ℓ1 [7] 3.2 27.55 / 0.8363 / 0.338 27.54 / 0.8377 / 0.330
DCSR [7] 3.2 26.80 / 0.8265 / 0.275 26.79 / 0.8275 / 0.268

Ours
SelfDZSR-ℓ1 3.2 28.13 / 0.8576 / 0.300 27.87 / 0.8465 / 0.321
SelfDZSR 3.2 27.85 / 0.8386 / 0.240 27.60 / 0.8274 / 0.253

Table D: Quantitative results on Olympus camera with 19 images. Best re-
sults are highlighted by red. The models trained only with ℓ1 (or ℓ2) loss are
marked in gray. RefSR† represents that the RefSR methods are trained in our
self-supervised learning manner.

Method
# Param

(M)
Full-Image

PSNR↑ / SSIM↑ / LPIPS↓
Corner-Image

PSNR↑ / SSIM↑ / LPIPS↓

SISR

EDSR [4] 43.1 26.99 / 0.7960 / 0.452 26.99 / 0.7917 / 0.451
RCAN [12] 15.6 27.54 / 0.8038 / 0.452 27.54 / 0.7995 / 0.451
CDC [9] 39.9 27.31 / 0.8030 / 0.466 27.30 / 0.7988 / 0.467
BSRGAN [11] 16.7 25.76 / 0.7422 / 0.341 25.75 / 0.7388 / 0.341
Real-ESRGAN [8] 16.7 26.00 / 0.7545 / 0.323 25.98 / 0.7517 / 0.321

RefSR†

SRNTT-ℓ2 [13] 5.5 26.51 / 0.7928 / 0.442 26.49 / 0.7879 / 0.441
SRNTT [13] 5.5 27.04 / 0.7870 / 0.357 27.03 / 0.7823 / 0.354
TTSR-ℓ1 [10] 7.3 25.44 / 0.7790 / 0.469 25.39 / 0.7756 / 0.466
TTSR [10] 7.3 25.12 / 0.7736 / 0.377 25.08 / 0.7693 / 0.370
C2-Matching-ℓ1 [2] 8.9 26.65 / 0.8001 / 0.448 26.62 / 0.7960 / 0.446
C2-Matching [2] 8.9 26.51 / 0.7728 / 0.380 26.49 / 0.7682 / 0.378
MASA-ℓ1 [5] 4.0 27.17 / 0.7982 / 0.423 27.17 / 0.7937 / 0.423
MASA [5] 4.0 26.66 / 0.7393 / 0.351 26.66 / 0.7348 / 0.350
DCSR-ℓ1 [7] 3.2 27.74 / 0.7987 / 0.437 27.73 / 0.7973 / 0.426
DCSR [7] 3.2 27.41 / 0.7894 / 0.351 27.39 / 0.7882 / 0.342

Ours
SelfDZSR-ℓ1 3.2 27.79 / 0.8124 / 0.395 27.56 / 0.7980 / 0.420
SelfDZSR 3.2 27.34 / 0.7862 / 0.292 27.12 / 0.7722 / 0.310
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Table E: Quantitative results on Panasonic camera with 20 images. Best re-
sults are highlighted by red. The models trained only with ℓ1 (or ℓ2) loss are
marked in gray. RefSR† represents that the RefSR methods are trained in our
self-supervised learning manner.

Method
# Param

(M)
Full-Image

PSNR↑ / SSIM↑ / LPIPS↓
Corner-Image

PSNR↑ / SSIM↑ / LPIPS↓

SISR

EDSR [4] 43.1 27.04 / 0.7994 / 0.379 27.15 / 0.7964 / 0.380
RCAN [12] 15.6 27.26 / 0.8055 / 0.381 27.36 / 0.8027 / 0.383
CDC [9] 39.9 27.02 / 0.7981 / 0.414 27.12 / 0.7949 / 0.414
BSRGAN [11] 16.7 26.27 / 0.7520 / 0.288 26.40 / 0.7482 / 0.288
Real-ESRGAN [8] 16.7 26.20 / 0.7625 / 0.275 26.31 / 0.7592 / 0.274

RefSR†

SRNTT-ℓ2 [13] 5.5 27.08 / 0.7988 / 0.374 27.18 / 0.7960 / 0.375
SRNTT [13] 5.5 27.14 / 0.7862 / 0.307 27.22 / 0.7829 / 0.306
TTSR-ℓ1 [10] 7.3 26.21 / 0.7859 / 0.383 26.26 / 0.7842 / 0.385
TTSR [10] 7.3 25.24 / 0.7558 / 0.329 25.26 / 0.7537 / 0.326
C2-Matching-ℓ1 [2] 8.9 26.61 / 0.8032 / 0.378 26.71 / 0.7994 / 0.381
C2-Matching [2] 8.9 25.70 / 0.7649 / 0.340 25.78 / 0.7596 / 0.342
MASA-ℓ1 [5] 4.0 26.94 / 0.7997 / 0.363 27.00 / 0.7958 / 0.365
MASA [5] 4.0 26.93 / 0.7388 / 0.299 27.04 / 0.7365 / 0.299
DCSR-ℓ1 [7] 3.2 26.58 / 0.7640 / 0.398 26.54 / 0.7632 / 0.390
DCSR [7] 3.2 26.40 / 0.7543 / 0.315 26.36 / 0.7528 / 0.308

Ours
SelfDZSR-ℓ1 3.2 27.90 / 0.8164 / 0.337 27.67 / 0.8001 / 0.361
SelfDZSR 3.2 27.41 / 0.7836 / 0.250 27.21 / 0.7674 / 0.265

Table F: Quantitative results on Sony camera with 17 images. Best results are
highlighted by red. The models trained only with ℓ1 (or ℓ2) loss are marked
in gray. RefSR† represents that the RefSR methods are trained in our self-
supervised learning manner.

Method
# Param

(M)
Full-Image

PSNR↑ / SSIM↑ / LPIPS↓
Corner-Image

PSNR↑ / SSIM↑ / LPIPS↓

SISR

EDSR [4] 43.1 27.12 / 0.8173 / 0.337 27.13 / 0.8195 / 0.331
RCAN [12] 15.6 27.42 / 0.8248 / 0.333 27.40 / 0.8274 / 0.326
CDC [9] 39.9 27.27 / 0.8207 / 0.357 27.27 / 0.8228 / 0.351
BSRGAN [11] 16.7 26.58 / 0.7732 / 0.284 26.57 / 0.7775 / 0.279
Real-ESRGAN [8] 16.7 26.20 / 0.7816 / 0.262 26.18 / 0.7876 / 0.256

RefSR†

SRNTT-ℓ2 [13] 5.5 26.20 / 0.8103 / 0.337 26.18 / 0.8138 / 0.331
SRNTT [13] 5.5 26.24 / 0.7969 / 0.290 26.23 / 0.8001 / 0.283
TTSR-ℓ1 [10] 7.3 25.86 / 0.8152 / 0.333 25.82 / 0.8195 / 0.327
TTSR [10] 7.3 24.91 / 0.7326 / 0.315 24.86 / 0.7353 / 0.310
C2-Matching-ℓ1 [2] 8.9 26.78 / 0.8221 / 0.327 26.73 / 0.8254 / 0.322
C2-Matching [2] 8.9 26.49 / 0.7813 / 0.298 26.44 / 0.7848 / 0.289
MASA-ℓ1 [5] 4.0 27.06 / 0.8149 / 0.306 27.06 / 0.8189 / 0.301
MASA [5] 4.0 25.85 / 0.7075 / 0.325 25.84 / 0.7106 / 0.318
DCSR-ℓ1 [7] 3.2 28.49 / 0.8216 / 0.335 28.45 / 0.8237 / 0.330
DCSR [7] 3.2 28.08 / 0.8128 / 0.272 28.03 / 0.8147 / 0.269

Ours
SelfDZSR-ℓ1 3.2 28.22 / 0.8311 / 0.292 28.34 / 0.8359 / 0.303
SelfDZSR 3.2 27.41 / 0.7921 / 0.246 27.47 / 0.7948 / 0.252
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(a) Short-focus (b) LR (c) [11] (d) [8] (e) [13] (f) [10]

(g) Telephoto (h) [2] (i) [5] (j) [7] (k) SelfDZSR (l) GT

(m) Short-focus (n) LR (o) [11] (p) [8] (q) [13] (r) [10]

(s) Telephoto (t) [2] (u) [5] (v) [7] (w) SelfDZSR (x) GT

Fig. C: Visual comparison on Canon camera. In the short-focus image, the yel-
low box indicates the overlapped scene with the telephoto image, while the red
box represents the selected LR patch. Our result in sub-figure (k) restores more
fine-scale textures, and that in sub-figure (w) is clearer and more photo-realistic.
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(a) Short-focus (b) LR (c) [11] (d) [8] (e) [13] (f) [10]

(g) Telephoto (h) [2] (i) [5] (j) [7] (k) SelfDZSR (l) GT

(m) Short-focus (n) LR (o) [11] (p) [8] (q) [13] (r) [10]

(s) Telephoto (t) [2] (u) [5] (v) [7] (w) SelfDZSR (x) GT

Fig.D: Visual comparison on Olympus camera. In the short-focus image, the
yellow box indicates the overlapped scene with the telephoto image, while the
red box represents the selected LR patch. Our result in sub-figure (k) is clearer,
and that in sub-figure (w) is more photo-realistic.
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(a) Short-focus (b) LR (c) [11] (d) [8] (e) [13] (f) [10]

(g) Telephoto (h) [2] (i) [5] (j) [7] (k) SelfDZSR (l) GT

(m) Short-focus (n) LR (o) [11] (p) [8] (q) [13] (r) [10]

(s) Telephoto (t) [2] (u) [5] (v) [7] (w) SelfDZSR (x) GT

Fig. E: Visual comparison on Panasonic camera. In the short-focus image, the
yellow box indicates the overlapped scene with the telephoto image, while the
red box represents the selected LR patch. Our results in sub-figure (k) and (w)
restore much more fine details.
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(a) Short-focus (b) LR (c) [11] (d) [8] (e) [13] (f) [10]

(g) Telephoto (h) [2] (i) [5] (j) [7] (k) SelfDZSR (l) GT

(m) Short-focus (n) LR (o) [11] (p) [8] (q) [13] (r) [10]

(s) Telephoto (t) [2] (u) [5] (v) [7] (w) SelfDZSR (x) GT

Fig. F: Visual comparison on Sony camera. In the short-focus image, the yellow
box indicates the overlapped scene with the telephoto image, while the red box
represents the selected LR patch. Our results in sub-figure (k) and (w) restore
much more fine-scale edges.
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(a) Short-focus (b) LR (c) [11] (d) [8] (e) [13] (f) [10]

(g) Telephoto (h) [2] (i) [5] (j) [7] (k) SelfDZSR (l) GT

(m) Short-focus (n) LR (o) [11] (p) [8] (q) [13] (r) [10]

(s) Telephoto (t) [2] (u) [5] (v) [7] (w) SelfDZSR (x) GT

Fig.G: Visual comparison onNikon camera. In the short-focus image, the yellow
box indicates the overlapped scene with the telephoto image, while the red box
represents the selected LR patch. Our result in sub-figure (k) restores much more
details, and that in sub-figure (w) is more photo-realistic.



SelfDZSR 13

(a) Short-focus (b) LR (c) [11] (d) [8] (e) [13] (f) [10]

(g) Telephoto (h) [2] (i) [5] (j) [7] (k) SelfDZSR (l) GT

(m) Short-focus (n) LR (o) [11] (p) [8] (q) [13] (r) [10]

(s) Telephoto (t) [2] (u) [5] (v) [7] (w) SelfDZSR (x) GT

Fig.H: Visual comparison on CameraFusion dataset. In the short-focus im-
age, the yellow box indicates the overlapped scene with the telephoto image,
while the red box represents the selected LR patch. Our result in sub-figure
(k) restores much more textures, and that in sub-figure (w) is clearer and more
photo-realistic.
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