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A Supplementary Material

A.1 Time-Awareness: PDE solutions

The proposed time-aware flow is given as the solution to (7). Letting the flow
be v = (vx, vy)>, the system of PDEs can be written as:
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Upwind and Burgers’ schemes can be used to discretize and numerically solve
the system of PDEs [11,41].

Discretization. Let vn(x, y) be the flow vector at discretized space- (e.g.,
pixel) and time-indices (x, y, n), with discretization steps �x,�y, and �t, re-
spectively, and let the forward (+) and backward (�) di↵erences of a scalar field
w (e.g., vnx or vny ) be defined as
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We discretize in time using forward di↵erences, @w
@t ⇡ (w(t+�t)�w(t))/�t, to

yield explicit update schemes: w(t+�t) ⇡ w(t) +�t@w@t .
Upwind scheme. The first-order upwind scheme is an explicit scheme that

updates the flow as follows, based on the sign of the variables: it uses D+
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�tmax{|vx|/�x+ |vy|/�y} < 1 (CFL stability condition [22]). For example, in
case that vnx > 0 and vny > 0 at the current discretization time n:
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Burgers’ scheme. The study of the inviscid Burgers’ equation provides a
more conservative scheme solution, especially at “shock” and “fan wave” cases
[41]. In this explicit scheme, the product terms in the same variable (which
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convey that the flow is transporting itself), vnxD
+
x v

n
x and vnyD

+
y v

n
y in (13), are

replaced with Ux and Uy respectively, which are given by:
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A.2 E↵ect of the Multi-scale Approach

The e↵ect of the proposed multi-scale approach (Fig. 4) is shown in Fig. 9. This
experiment compares the results of using multi-scale approaches (in a coarse-to-
fine fashion) versus using a single (finest) scale. With a single scale, the optimizer
gets stuck in a local extremal, yielding an irregular flow field (see the optical flow
rows), which may produce a blurry IWE (e.g., outdoor day1 scene). With three
scales (finest tile and two downsampled ones), the flow becomes less irregular
than with one single scale, but there may be regions with few events where the
flow is di�cult to estimate. With five scales the flow becomes smoother, more
coherent over the whole image domain, while still being able to produce sharp
IWEs.

A.3 Sensitivity Analysis

A.3.1 The choice of loss function. Table 5 shows the results on the MVSEC
benchmark for di↵erent loss functions. We compare the (squared) gradient mag-
nitude, image variance, average timestamp [58], and normalized average times-
tamp [21]. The gradient magnitude and image variance losses produce the best
accuracy compared with the two average timestamp losses. Quantitatively, the
image variance loss gives competitive results with respect to the gradient mag-
nitude. However, for the reasons described in Sec. 3.2, and because the image
variance sometimes overfits, we use gradient magnitude. Both average timestamp
losses are trapped in the global optima which pushes all events out of the image
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indoor flying1

outdoor day1

(a) Input events (b) Single (fine) scale (c) Three scales (d) N` = 5 scales

Fig. 9. E↵ect of the multi-scale approach. For each sequence, the top row shows the
estimated flow, the middle row shows the estimated flow masked by the events, and
the bottom row shows the IWEs.

plane, hence, the provide very large errors (marked as “> 99” in Tab. 5). This
e↵ect is visualized in Fig. 10.

Remark : Maximization of (6) does not su↵er from the problem mentioned
in [21] that a↵ects the average timestamp loss function, namely that the optimal
flow warps all events outside the image so as to minimize the loss (undesired
global optima shown in Fig. 10d-10e). If most events were warped outside of
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the image, then (6) would be smaller than the identity warp, which contradicts
maximization.

Table 5. Sensitivity analysis on the choice of loss function (MVSEC, dt = 4). The
contrast and gradient magnitude functions provide notably better results than the
losses based on average timestamps.

indoor flying1 indoor flying2 indoor flying3 outdoor day1

AEE # %Out # AEE # %Out # AEE # %Out # AEE # %Out #

Gradient magnitude [13] 1.68 12.79 2.49 26.31 2.06 18.93 1.25 9.19
Image variance [15] 1.70 11.25 2.18 21.91 1.93 15.84 1.82 15.89
Avg. timestamp [58] >99 >99 >99 >99 >99 >99 >99 >99
Norm. avg. timestamp [21] >99 >99 >99 >99 >99 >99 >99 >99

(a) Input events
(b) Gradient

Magnitude
(c) Variance

(d) Avg.

timestamp [58]

(e) Norm. avg.

timestamp [21]

Fig. 10. IWEs for di↵erent loss functions. Average timestamp losses overfit to unde-
sired global optima, which pushes most events out of the image plane.

A.3.2 The regularizer weight. Table 6 shows the sensitivity analysis on
the regularizer weight � in (9). � = 0.0025 provides the best accuracy in the
outdoor sequence, while � = 0.025 provides slightly better accuracy in the indoor
sequences. Comparing their accuracy di↵erences, we use the former because it
has a higher accuracy gain.

Table 6. Sensitivity analysis on the regularizer weight (MVSEC data, dt = 4).

indoor flying1 indoor flying2 indoor flying3 outdoor day1

AEE # %Out # AEE # %Out # AEE # %Out # AEE # %Out #

� = 0.0025 1.68 12.79 2.49 26.31 2.06 18.93 1.25 9.19
� = 0.025 1.52 9.07 2.39 26.26 1.94 18.44 1.86 17.11
� = 0.25 1.89 16.54 3.19 36.95 2.91 30.85 2.57 27.86
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A.4 Additional Results

A.4.1 Full results on DSEC test sequences. For completeness, Tab. 7
reports the results on all DSEC test sequences. No GT flow is available for these
sequences. As mentioned in Sec. 4.3, only one competing method is available at
the time of publication, which is supervised learning. Our method consistently
produces better FWL (i.e., sharper IWEs) than the supervised learning method,
which su↵ers from GT issues to produce sharp IWEs. The sharpness di↵erences
are most significant in IMOs and on the road close to the vehicle (see Fig. 6).
The FWL is computed using the same 100ms intervals used for the accuracy
benchmark calculation. Since the FWL is sensitive to the number of events, the
previous convention is consistent with the benchmark.

Table 7. Results on the DSEC optical flow benchmark [18].

All interlaken 00 b interlaken 01 a thun 01 a

AEE # %Out # FWL " AEE # %Out # FWL " AEE # %Out # FWL " AEE # %Out # FWL "

E-RAFT [18] 0.79 2.68 1.29 1.39 6.19 1.32 0.90 3.91 1.42 0.65 1.87 1.20
Ours 3.47 30.86 1.37 5.74 38.93 1.50 3.74 31.37 1.51 2.12 17.68 1.24

thun 01 b zurich city 12 a zurich city 14 c zurich city 15 a

AEE # %Out # FWL " AEE # %Out # FWL " AEE # %Out # FWL " AEE # %Out # FWL "

E-RAFT [18] 0.58 1.52 1.18 0.61 1.06 1.12 0.71 1.91 1.47 0.59 1.30 1.34
Ours 2.48 23.56 1.24 3.86 43.96 1.14 2.72 30.53 1.50 2.35 20.99 1.41

A.4.2 Qualitative results for DNN. Additional qualitative results of our
unsupervised learning setting (Sec. 4.6) are shown in Fig. 11. We compare our
method with the state-of-the-art unsupervised learning [21]. Our results resemble
the GT flow. See Tab. 4 for the quantitative result.
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(a) Input events (b) GT
(c) Our EVFlowNet

with (9)
(d) USL [21]

Fig. 11. Result of our DNN on the MVSEC outdoor sequence. Our DNN (EV-FlowNet
architecture) trained with (9) produces better result than the state-of-the-art unsuper-
vised learning method [21]. For a quantitative comparison, see Table 4.
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