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Abstract. Single image super-resolution (SR) has been boosted by deep
convolutional neural networks with growing model complexity and com-
putational costs. To deploy existing SR networks onto edge devices, it is
necessary to accelerate them for large image (4K) processing. The differ-
ent areas in an image often require different SR intensities by networks
with different complexity. Motivated by this, in this paper, we propose a
Mask Guided Acceleration (MGA) scheme to reduce the computational
costs of existing SR networks while maintaining their SR capability. In
our MGA scheme, we first decompose a given SR network into a Base-
Net and a Refine-Net. The Base-Net is to extract a coarse feature and
obtain a coarse SR image. To locate the under-SR areas in the coarse
SR image, we then propose a Mask Prediction (MP) module to generate
an error mask from the coarse feature. According to the error mask, we
select K feature patches from the coarse feature and refine them (in-
stead of the whole feature) by Refine-Net to output the final SR image.
Experiments on seven benchmarks demonstrate that our MGA scheme
reduces the FLOPs of five popular SR networks by 10% ∼ 48% with
comparable or even better SR performance. The code is available at
https://github.com/huxiaotaostasy/MGA-scheme.
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1 Introduction

Single image super-resolution (SR) aims to recover high-resolution (HR) im-
ages from the corresponding low-resolution (LR) ones. During the last decades,
this problem is widely studied in academia and industry of the computer vision
field [8, 19, 26, 47, 30, 25]. Ever since the pioneer work of SRCNN [7], numerous
methods [19, 48, 47, 33, 5] have been developed to improve the SR performance
along with the advances in network backbones [13, 16, 15, 41, 39]. However, this
advancement is achieved at the expense of designing larger SR networks with
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more computational costs [7, 23, 47, 34, 33, 14, 50, 6], hindering the corresponding
SR networks from being deployed on edge devices such as cameras and mobiles.

For real-world applications, researchers shift to developing efficient SR net-
works for high-resolution image processing. The efficiency is mainly judged by
three aspects: running time, number of parameters, or floating-point operations
(FLOPs). Early works mainly report the running time [7, 9, 19], which is largely
determined by the hardware and implementations of basic operations (e.g., 3×3
conv.) in deep learning frameworks [35, 1]. Later works mainly resort to reducing
the number of parameters [37, 38, 27] or FLOPs [29, 40] for network efficiency.
However, pursuing reduction on parameters (or FLOPs) may increase the run-
ning time [37] and FLOPs (or parameters) amount. In all, expertise knowledge
on deep neural networks is essential for developing efficient SR networks.

Instead of developing new SR networks, a recent trend is to reduce the pa-
rameter amount and/or FLOPs of existing ones while maintaining their SR ca-
pability [21]. As far as we know, ClassSR [21] is a pioneer work in this direction.
It classifies the patches of an LR image into the “easy” (restoration difficulty),
“medium”, and “hard” categories, and restores these patches by three SR net-
works in different widths. However, the extra classification network in ClassSR
largely limits its practical efficiency due to the additional computational costs.
Besides, since the three SR networks in [21] share the same network architecture
but with different widths, ClassSR suffers from a huge growth on parameters.

In this paper, we develop a new scheme to reduce the FLOPs and running
time on edge devices of popular SR networks. Our scheme divides an existing SR
network along the depth, e.g., RCAN [47], into a base network (Base-Net) and
a refine network (Refine-Net). The Base-Net restores globally the LR image to
extract a coarse feature and output a coarse SR image. Then we propose a Mask
Prediction (MP) module to estimate an error mask from the coarse feature by
Base-Net, indicating the gap between the coarse and desired SR images. This
mask is used to select the feature patches of under super-resolved (under-SR)
areas in the coarse SR image. The selected feature patches will be fed into
the Refine-Net for further refinement. Since Refine-Net only needs to refine the
selected areas, instead of the whole coarse SR image, the computational costs
(e.g., FLOPs) of the original SR network, i.e., RCAN [47], can be largely reduced.
The refined image is output as the final SR image.

Our Mask-Guided Acceleration (MGA) scheme is different from ClassSR [21]
on at least two aspects. Firstly, ClassSR has an extra classification network and
three parallel SR networks, resulting in a huge growth on the number of param-
eters. But our MGA scheme only brings a marginal increment on parameters by
our lightweight MP module. Secondly, ClassSR has to perform classification and
SR sequentially during the inference, making the SR process time-consuming.
However, in our MGA scheme, after the coarse SR by the Base-Net, the Refine-
Net of an existing SR network only needs to handle a few selected complex areas.
As shown in Figure 1, our MAG scheme reduces the computational FLOPs of
FSRCNN [9], SRResNet [49], and RCAN [47] by 42%, 33%, and 23%, respec-
tively, while arriving at comparable PSNR results on Test2K [12]. Experiments
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Fig. 1: Average PSNR (dB) and FLOPs (G) of different SR networks
w/ or w/o our Mask-Guided Acceleration scheme on Test2K [12] at scale
factor 4. “B” and “M” denote the baseline and mask-guided models, respectively.

on seven benchmark datasets validate the effectiveness of our MGA Scheme on
accelerating five popular SR networks [9, 49, 29, 47].

Our main contributions are summarized as follows:

– We propose a Mask-Guided Acceleration (MGA) scheme to reduce
the FLOPs amount and running time of existing SR networks while
preserving their SR capability. Given an existing SR network, our MGA
scheme divides it into a Base-Net to restore the LR image globally and a
Refine-Net to further refine the selected under-SR areas locally.

– We propose a lightweight Mask Prediction module to adaptively
select the feature patches of under-SR areas, which are from the coarse SR
image by the Base-Net and further refined by the Refine-Net.

– Experiments on seven benchmark datasets demonstrate that our Mask-
Guided Acceleration scheme can accelerate five popular SR net-
works in different scales while achieving comparable SR performance.

2 Related Work

2.1 Single Image Super-Resolution

Single image SR has been advanced by convolutional neural networks (CNNs)
ever since SRCNN [7]. The work of VDSR [19] introduces a residual learning
scheme to avoid direct SR prediction. The integration of residual and dense
connections is later exploited in RDN [48]. Despite the discriminative learning
framework, generative learning [10] is also employed in SRGAN [23] to produce
visually pleasing SR results. Attention mechanisms have also been utilized in
many SR networks. For example, RCAN [47] incorporates channel attention [15]



4 X. Hu et al.

into residual learning [13]. Self-attention is adopted in [33] to provide global
correlation information for SR. The success of the transformer framework in
natural language processing inspires the work of IPT [5]. These SR networks
achieve performance gain at the expense of increasing parameters and FLOPs,
hindering their applications on edge devices [3, 29, 24]. In this work, we aim to
accelerate general SR networks while preserving their SR capability.

2.2 Lightweight Super-Resolution

Lightweight super-resolution aims to achieve efficient SR by reducing the running
time, the number of parameters and/or floating point operations (FLOPs). To
reduce the running time, FSRCNN [9] performs upsampling at the final stage
and uses small convolution kernels, while LapSRN [22] gradually upsamples the
feature maps. But running time is greatly influenced by the hardware, the actual
implementations, and the deep learning frameworks [46, 35, 1]. The parameter
amount is also a useful criterion to evaluate model efficiency [37, 49]. To this end,
DRRN [37] learns shared residual blocks in a recursive manner, while PAN [49]
incorporates the self-calibrated convolution [28] and introduces a pixel attention
module. However, the reduction on parameter amount does not necessarily bring
clear improvements on the model efficiency [46]. Recent works [29, 40] often tend
to reduce the number of FLOPs. RFDN [29] replaces standard residual blocks
with shallow variants, arriving at similar SR results with fewer FLOPs. Overall,
it is challenging to design better lightweight SR networks. In this paper, we
propose a general scheme to accelerate general SR networks.

2.3 Accelerating Super-Resolution Networks

Accelerating super-resolution networks is an alternative way for lightweight SR.
Along this direction, SMSR [40] adaptively tackles different areas by efficient
convolutions, which are not plug-and-play to general SR networks. AdderSR [36]
replaces amounts of multiplications by additions in convolutions to reduce the
energy consumption. But it suffers from clear degradation in SR performance.
ClassSR [21] is a pioneer framework to accelerate SR networks. It assigns suit-
able SR networks to process local areas with different restoration difficulties,
which are determined by a classification network. Though with less computa-
tional costs, ClassSR also brings a huge amount of extra parameters. FADN [44]
replaces the original residual block with an efficient one to accelerate SR net-
works. However, each replacement increases the parameter amounts of the SR
networks. In this paper, we introduce a mask-guided scheme to accelerate popu-
lar SR networks by performing coarse SR on the LR image and further refinement
on under-SR areas only. This provides a flexible trade-off between SR capability
and network efficiency with a little parameter growth.
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3 Our Mask-Guided Acceleration Scheme

3.1 Motivation and Overview

In image super-resolution (SR), the quality of SR images is mainly degraded by
the information loss that occurs in complex areas such as edges and textures [40].
To well recover these areas, most SR methods resort to developing networks
larger than those required for the plain areas [11].

Increasing the network width (i.e., number of channels) is a feasible choice
to improve its capability of restoring complex areas [21]. But for different areas
of an image, an SR network with a single branch can only extract the features
with equal channel dimension. Thus, the work of [21] restores the areas with
different complexities by multiple SR networks with respective widths. However,
this brings a great increase in the amount of network parameters [21].

Increasing the network depth (i.e., number of layers) is an alternative way to
well recover complex areas. However, handling different areas simply by multiple
SR networks with adaptive depths still suffers from significant parameter growth.
To alleviate this problem, we propose to process different areas by the sub-
networks with adaptive depths of a single-branch SR network. This is feasible
by decomposing an SR network into different parts along the depth dimension:
the shallow part restores the whole image while the deep part only recovers the
complex areas. Since complex areas are sparse in the image, the computational
costs of the decomposed SR network can be largely reduced.

Take the PAN network [49] for example. The original PAN has 16 SCPA
blocks. We denote as PAN-B the PAN with 12 SCPA blocks. Given an LR im-
age in Figure 2 (1), we employ PAN-B and PAN to obtain a coarse SR image and
a final SR image in Figure 2 (2) and Figure 2 (3), respectively. The absolute dif-
ference (error map) between these two SR images is calculated on the luminance
channel and shown in Figure 2 (4). We plot its histogram in Figure 2 (5), and
observe that most areas are smooth with small errors (<0.1) while large errors
(e.g., >0.1) are sparsely dispersed in textures and edges. This demonstrates that
most areas in the LR image can be well recovered by the shallower PAN-B, while
only a few areas need “stronger” restoration by the deeper PAN. This motivates
us to accelerate an SR network by decomposing it into a base network for coarse
restoration and a refine network to further enhance the (sparsely) complex areas.
Overview. In this work, we propose a Mask-Guided Acceleration (MGA) scheme
to accelerate general SR networks. Specifically, we design a Mask Prediction
(MP) module (will be introduced in §3.3) to indicate the areas with large errors
between coarse and final SR images. We then incorporate the MP module into a
decomposed SR network (D-Net) to contain three parts: the base network (Base-
Net), the MP module, and the refine network (Refine-Net). Our MGA scheme is
illustrated in Figure 3. The LR image is first fed into the Base-Net to obtain a
feature map Fc, which is upsampled to produce a coarse SR image Ic. Then we
use the proposed MP module to generate an error mask M from Fc. Guided by
the mask M , we select a few areas with the largest errors and crop the respective
feature patches from Fc. The feature patches are fed into Refine-Net for further
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Fig. 2: Difference between the coarse and final SR images. The LR image
(1) is restored by PAN-B and PAN to produce the coarse SR image (2) and the
final SR image (3), respectively. (4): the error map between (2) and (3).

refinement. Finally, we replace the respective patches in the coarse SR image Ic
by the refined patches to output the final SR image ISR.

3.2 Base Network for Global Super-Resolution

Given an input LR image ILR, the goal of Base-Net is to extract its coarse feature
map Fc, which is upsampled to output a coarse SR image Ic. The smooth areas
dominating the LR image ILR can be well restored with no need of further
processing. Since the Base-Net is shallower than the decomposed SR network,
the complex areas like edges and textures are still relatively under-SR when
compared to the smooth areas. By varying the depth of Base-Net, it is feasible
to trade-off its SR capability and model efficiency.

3.3 Mask Prediction and Feature Patch Selection

To locate the under-SR areas in Ic for further refinement, we feed the coarse
feature Fc into our Mask-Prediction module to obtain an error mask M , and
accordingly select K feature patches {Fk}Kk=1 from Fc with the largest errors.
Mask prediction. Given the coarse feature Fc∈RH×W×C , our Mask Prediction
(MP) module is to estimate an adaptive error mask M indicating the under-
SR areas in the coarse SR image Ic. Specifically, as shown in Figure 4, the
coarse feature Fc is input into two 3 × 3 convolutional layers with a Global

Average Pooling (GAP) to produce a spatial feature map Fs ∈ R
1
pH× 1

pW×2,
where p≥1 is the spatial size of the feature patch Fk. Note that each spatial
element of Fs corresponds to a feature patch Fk ∈ Rp×p×C . Then, a softmax
operation is performed on Fs along the channel dimension to output a spatial

mask Ms ∈ R
1
pH× 1

pW×2. The two channels in Ms, denoted as M1
s and M2

s ,
indicate the possibilities of being well-SR and under-SR patches, respectively.

The under-SR mask M2
s ∈ R

1
pH× 1

pW , obtained by the spatial-wise softmax
operation, only reflects the position-wise possibilities of being under-SR patches.
To integrate the surrounding information for more comprehensive mask predic-
tion, we utilize a convolution operation over theM2

s for larger spatial perception.
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Fig. 3: Illustration of our Mask-Guided Acceleration (MGA) scheme to
accelerate super-resolution (SR) networks, e.g., PAN [49]. PAN (top-
left) mainly contains 16 SCPA blocks. PAN-D (top-right) is the decomposed
PAN consisting of a Base-Net with 12 SCPA blocks and a Refine-Net with 4
SCPA blocks. Mask-Guided PAN (bottom) is built upon the PAN-D, but
accelerated by our MGA scheme. Here, the LR image is fed into the Base-Net
to output a coarse feature. This coarse feature is upsampled to produce a coarse
SR image, and used to estimate an error mask by the proposed Mask Prediction
module. K patches from coarse feature with largest errors are selected for further
refinement by the Refine-Net. The refined image patches are used to replace the
respective patches in the coarse SR image to output the final SR image.

To achieve position-adaptive interaction, here we implement the dynamic convo-
lution (D-Conv) [18] over the M2

s to generate position-wise filters by integrating
the corresponding surrounding features in Fc. The mask M2

s processed by the

D-Conv is employed as the final error mask, denoted as M ∈ R
1
pH× 1

pW .

Feature patch selection. Here, each element in the error mask M corresponds
to a feature patch in the coarse feature Fc. We select K feature patches from Fc

by theK largest elements inM . These selected feature patches {Fk∈Rp×p×C}Kk=1,
instead of Fc, will be fed into the Refine-Net for further refinement. This greatly
reduces the amounts of computational costs for the original SR network.

3.4 Refine Network for Local Enhancement

The K feature patches {Fk}Kk=1 selected by our MP module, mainly from the
complex areas under-SR by the Base-Net, are fed into the Refine-Net for further
enhancement. The outputs are the reconstructed high-resolution image patches
{Pk ∈ Rsp×sp×3}Kk=1, where s is the SR scale factor (e.g., 4). In this way, the
Refine-Net avoids processing the whole coarse feature Fc ∈ RH×W×C . Since one
can set Kp2 ≪ HW , the computational costs of the original SR network can
be largely reduced on the Refine-Net. This is the key reason that our MGA
scheme is able to accelerate the original SR network. Finally, the refined patches
{Pk}Kk=1 are used to replace the respective patches in the coarse SR image Ic,
to output the final SR image ISR.
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Fig. 4: Our Mask Prediction module. The feature Fc is fed into two 3 × 3
convolutional layers and a Global Average Pooling (GAP) to produce a spatial
feature Fs. A softmax operation is performed on Fs along the channel dimension
to output a spatial mask Ms = [M1

s ,M
2
s ]. The feature Fc and mask M2

s are
fed into a dynamic convolution (D-Conv) to output final error mask M .

3.5 Training Strategy

When directly trained end-to-end from scratch, the mask-guided SR network
suffers from clear performance drops, as will be shown in §4.4 (Table 4). The
main reason is that, in the early training, the initial features extracted by the
Base-Net are of low quality and change greatly, making our MP-module unstably
updated and failing to reach a good local optimum. To avoid this problem, we
propose to train the Mask-Guided SR network in a three-step strategy.
Step 1. We train the decomposed SR network (D-Net) on all the training data
(will be introduced in §4.2) with an ℓ1 loss function.
Step 2. This step aims to endow the Refine-Net with the capability to process
small feature patches. To this end, once the Base-Net extracts the coarse feature
Fc, we first crop small feature patches from it and then feed these cropped feature
patches into the Refine-Net. The D-Net trained with all cropped feature patches
is denoted as All-Net, which is trained with the same setting as that in Step 1.
Step 3. This step aims to train the mask-guided SR network, in which the Base-
Net and Refine-Net are initialized by the All-Net in Step 2. Now we fix the
learned weights of the Base-Net and Refine-Net, and only train our MP-module.
To supervise the mask prediction process for better SR performance, we deploy
the absolute difference between the coarse and final SR images obtained by the
Base-Net and All-Net in Step 2, respectively, as the “ground-truth” for the
corresponding mask M predicted by our MP module. Here, we also penalty the
mask prediction by an ℓ1 loss function.

4 Experiments

4.1 Implementation Details

Firstly, we train the decomposed SR network (D-Net). The mini-batch size per
GPU is set as 32. We use the Adam optimizer [20] with the default setting. We
set p = 4. The total number of iterations is 600K and divided into three identical
periods. For each period, we use a cosine annealing strategy with warm-up to
adjust the learning rate. Each period contains 200K iterations and is subdivided
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into two stages. In the first 2K iterations, called warmup, the learning rate is
increased from 4 × 10−5 to 4 × 10−4. In the remaining 198K, the learning rate
is decayed from 4 × 10−4 to 1 × 10−7. Secondly, we use the trained D-Net as
the initialization model of the All-Net. Then we train the All-Net for another
600K iterations in the same way as that for D-Net. Finally, we employ the pre-
trained All-Net to initialize the Mask-Guided SR network, and only train the
MP module while fixing the Base-Net and Refine-Net. We train the MP module
for 100K iterations using the cosine annealing learning rate strategy, with 2K
iterations for warm-up. The other settings are the same as the training of D-Net.
We perform data argumentation with randomly horizontal/vertical flipping and
rotation with 90◦. For a fair comparison with the Base-Net of the original SR
network, we also retrain it from scratch with the same settings as training the
D-Net. All models are trained on two GeForce RTX 2080Ti GPUs.

4.2 Datasets and Metrics

Training set. We use the DIV2K [2] and Flickr2K [42] datasets for network
training. We crop the HR images in DIV2K and Flickr2K into 480 × 480 sub-
images, and use these sub-images as the HR images. We downsample the HR
images by scale factors of 2, 3, or 4 to obtain the corresponding LR images.
We randomly crop a 64 × 64 patch from each LR image and a 128 × 128 (or
192 × 192, 256 × 256) patch from the corresponding HR image as the paired
training samples for the ×2 (or ×3, ×4) SR task.
Test set. We evaluate different methods on seven standard datasets: Set5 [4],
Set14 [45], B100 [31], Manga109 [32], Urban100 [17], Test2K and Test4K. For
Test2K (or Test4K), as suggested in ClassSR [21], we downsample the 200 images
(index: 1201–1400) from DIV8K [12] to 2K (or 4K) resolution as HR images.
Here, we only provide the results for ×3 and ×4 SR tasks on Urban100, Test2K,
and Test4K. Please refer to the Supplementary File for more comparison results.
Metric. We calculate PSNR and SSIM [43] on the Y channel of the YCbCr
color space to evaluate different comparison methods.

4.3 Comparison Results

Comparison of SR network variants. We implement our MGA scheme into
five popular SR networks with diverse parameter amounts, i.e., FSRCNN [9]
(∼42K), PAN [49] (∼300K), RFDN [29] (∼700K), SRResNet [23] (∼2M) and
RCAN [47] (∼16M). The details of decomposing different SR networks are pro-
vided in the Supplementary File. For each network, we evaluate its Base network
(-B), the Decomposed network (-D) before acceleration, the All-Net trained with
all cropped feature patches (-A), and the mask-guided network accelerated by
our scheme (-M). The results on ×3 and ×4 SR tasks are listed in Table 1. One
can see that the mask-guided networks (appended by “-M”) achieve compara-
ble PSNR/SSIM results with the decomposed ones (appended by “-D”, achiev-
ing close SR performance to their original networks, respectively), but reduc-
ing the FLOPs amounts of these five SR networks by 10%∼48% with a little
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Table 1: Comparison results of different SR networks on the Urban100,
Test2K and Test4K datasets. “-B”: Base-Net. “-D”: D-Net. “-A”: ALL-Net. “-
M”: network accelerated by our MGA scheme. See §3.5 and §4.3.

Scale Method # Params
Urban100 Test2K Test4K

PSNR SSIM FLOPs(G) PSNR SSIM FLOPs(G) PSNR SSIM FLOPs(G)

×3

FSRCNN-B 23K 25.87 0.7919 11.25 28.47 0.8187 26.27 29.87 0.8573 100.77
FSRCNN-D 42K 26.07 0.7986 22.08 28.56 0.8211 51.55 29.99 0.8594 197.76
FSRCNN-A 42K 26.24 0.8036 22.36 28.60 0.8220 52.20 30.05 0.8603 200.26
FSRCNN-M 43K 26.22 0.8025 13.45 28.59 0.8216 28.61 30.03 0.8598 103.85
PAN-B 204K 27.80 0.8453 27.69 29.10 0.8387 64.66 30.71 0.8749 248.07
PAN-D 296K 27.97 0.8481 49.42 29.17 0.8395 115.38 30.80 0.8757 442.68
PAN-A 296K 28.04 0.8499 67.18 29.20 0.8407 156.84 30.84 0.8768 601.75
PAN-M 311K 27.96 0.8475 36.34 29.17 0.8396 74.94 30.78 0.8757 266.49
RFDN-B 424K 27.89 0.8473 34.42 29.15 0.8393 80.37 30.79 0.8759 308.37
RFDN-D 698K 28.08 0.8507 57.04 29.21 0.8405 133.18 30.85 0.8765 510.98
RFDN-A 698K 28.32 0.8556 81.35 29.26 0.8420 189.94 30.91 0.8780 728.73
RFDN-M 721K 28.28 0.8545 45.16 29.23 0.8403 93.67 30.84 0.8761 334.38
SRResNet-B 1.10M 27.62 0.8420 120.13 28.93 0.8361 280.49 30.36 0.8712 1076.11
SRResNet-D 1.67M 28.06 0.8501 194.93 29.18 0.8393 455.14 30.76 0.8751 1746.16
SRResNet-A 1.67M 28.08 0.8503 234.22 29.20 0.8397 546.86 30.78 0.8753 2098.07
SRResNet-M 1.71M 28.01 0.8485 144.70 29.18 0.8391 309.26 30.76 0.8747 1125.70
RCAN-B 11.05M 28.57 0.8613 934.84 29.37 0.8456 2182.72 31.03 0.8808 8374.18
RCAN-D 16.07M 29.10 0.8705 1360.41 29.55 0.8497 3176.36 31.25 0.8845 12186.37
RCAN-A 16.07M 29.16 0.8717 1851.63 29.56 0.8499 4323.29 31.25 0.8847 16586.64
RCAN-M 16.11M 29.10 0.8706 1110.19 29.55 0.8493 2362.27 31.23 0.8841 8574.54

×4

FSRCNN-B 23K 24.32 0.7192 10.93 27.01 0.7499 25.43 28.22 0.7984 97.57
FSRCNN-D 42K 24.43 0.7230 21.63 27.06 0.7512 50.31 28.29 0.7997 193.01
FSRCNN-A 42K 24.52 0.7271 21.78 27.09 0.7525 50.67 28.33 0.8009 194.41
FSRCNN-M 43K 24.50 0.7261 14.60 27.09 0.7523 29.19 28.31 0.8004 101.74
PAN-B 215K 25.87 0.7780 20.84 27.52 0.7716 48.47 28.91 0.8187 185.96
PAN-D 313K 26.01 0.7828 36.05 27.56 0.7725 83.86 28.96 0.8195 321.74
PAN-A 313K 26.05 0.7840 45.53 27.57 0.7730 105.91 28.97 0.8200 406.34
PAN-M 328K 26.02 0.7825 29.74 27.57 0.7728 58.30 28.96 0.8195 200.37
RFDN-B 433K 26.01 0.7839 19.89 27.53 0.7730 46.27 28.95 0.8202 177.51
RFDN-D 717K 26.09 0.7862 33.11 27.60 0.7743 77.03 29.02 0.8213 295.53
RFDN-A 717K 26.18 0.7886 46.83 27.63 0.7751 108.95 29.05 0.8221 418.02
RFDN-M 740K 26.17 0.7878 29.94 27.61 0.7741 57.75 29.03 0.8210 196.15
SRResNet-B 1.25M 25.74 0.7773 92.59 27.35 0.7696 215.40 28.49 0.8144 826.38
SRResNet-D 1.97M 26.08 0.7857 159.59 27.57 0.7731 371.26 28.94 0.8195 1424.36
SRResNet-A 1.97M 26.08 0.7859 181.77 27.57 0.7736 422.85 28.93 0.8199 1622.31
SRResNet-M 2.01M 26.07 0.7850 124.04 27.57 0.7735 249.20 28.92 0.8197 871.89
RCAN-B 11.02M 26.56 0.8002 547.86 27.74 0.7791 1274.50 29.16 0.8251 4889.71
RCAN-D 16.00M 26.95 0.8115 808.21 27.85 0.7838 1880.14 29.31 0.8296 7213.30
RCAN-A 16.00M 27.00 0.8128 1085.53 27.86 0.7842 2525.29 29.32 0.8300 9688.46
RCAN-M 16.04M 26.96 0.8119 728.52 27.86 0.7837 1457.51 29.31 0.8295 5084.44

parameter growth. We also compare the visual results by different variants of
RCAN/SRResNet in Figure 5. We observe that the mask-guided variants (-M)
obtain comparable or better quality than the decomposed ones (-D), validating
the effectiveness of our MGA scheme on preserving their SR capability.

Comparison with ClassSR [21]. We compare our MGA scheme with ClassSR
on the Urban100, Test2K, and Test4K datasets. For a fair comparison, we retrain
each SR network accelerated by ClassSR [21] on DIV2K and Flickr2K, while the
other settings are kept unchanged. In Table 2, we compare the PSNR results on
RGB color space, and the average FLOPs of ClassSR processing a whole image
as our MGA does. Note that the ClassSR here obtains higher FLOPs than
those reported in [21]. The reason is that the original ClassSR only calculates
the average FLOPs on the cropped 32 × 32 image patches, while needing to
consider the FLOPs of the overlapping areas between 32 × 32 image patches
when processing a whole image. From Figure 5, we observe that the SR networks
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Fig. 5: SR images by different methods on the ×4 SR task. “-B”: Base-
Net. “-C”: network accelerated by ClassSR. “-M”: network accelerated by our
MGA scheme. “-D”: D-Net. Please refer to §3.5 and §4.3 for more details.

Table 2: Results of different SR networks accelerated by ClassSR and
our MGA scheme on the Urban100, Test2K and Test4K datasets. “-M”: net-
work accelerated by our MGA scheme. “-C”: network accelerated by ClassSR.

Scale Method # Params
Urban100 Test2K Test4K

PSNR(RGB) FLOPs(G) PSNR(RGB) FLOPs(G) PSNR(RGB) FLOPs(G)

×4

FSRCNN-C 113K 22.89 20.07 25.61 36.77 26.91 139.72
FSRCNN-M 43K 23.01 14.60 25.66 29.19 26.94 101.74
SRResNet-C 3.06M 24.53 149.92 26.20 298.18 27.66 1135.60
SRResNet-M 2.01M 24.55 124.04 26.20 249.20 27.66 871.89

RCAN-C 30.11M 25.14 741.76 26.39 1380.80 27.88 5255.70
RCAN-M 16.04M 25.43 728.52 26.46 1457.51 27.96 5084.44

of RCAN and SRResNet accelerated by our MGA scheme recover the structure
and textures more clearly than those accelerated by ClassSR.
Speed on mobile devices. To test the speed of SR networks accelerated by
our MGA scheme and ClassSR on mobile devices, we deploy the accelerated
RCAN on Kirin 980 using the Pytorch Mobile framework1. The average speed
is calculated for the ×4 SR task with 256× 256× 3 images. The average speeds
of RCAN-D, RCAN-C and RCAN-M are 45.61s, 38.91s and 35.51s, respectively.

4.4 Ablation Study

Now we conduct a more detailed examination of our MGA scheme on SR to
assess: 1) the design of our Mask Prediction (MP) module; 2) effectiveness of
our MP module on mask prediction; 3) how to train mask-guided SR networks

1 https://pytorch.org/mobile/home/
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Fig. 6: Visualization of the LR image, the HR image, the “ground-truth” error
mask (MASK GT), and the error mask predicted by our MP module.

Table 3: Results of PAN-M with the spatial feature map Fs of one
channel or two channels in our MP module on Urban100, Test2K, and
Test4K. “1C”: the spatial feature Fs is of one channel. The scale factor is 4.

Method
Urban100 Test2K Test4K

PSNR SSIM FLOPs(G) PSNR SSIM FLOPs(G) PSNR SSIM FLOPs(G)

PAN-B 25.87 0.7780 20.84 27.52 0.7716 48.47 28.91 0.8187 185.96

PAN-M(1C) 25.96 0.7812 29.74 27.55 0.7725 58.30 28.94 0.8193 200.37

PAN-M 26.02 0.7825 29.74 27.57 0.7728 58.30 28.96 0.8195 200.37

PAN-D 26.01 0.7828 36.05 27.56 0.7725 83.86 28.96 0.8195 321.74

with our MP module; 4) the impact of decomposing manner to SR networks in
our MGA scheme; 5) how the size of feature patches affects our MGA scheme;
6) how the order of selecting elements from the error mask influences the SR
performance. More ablation studies are provided in the Supplementary File.

1) How to design our MP module? A trivial design of our MP module is
to generate the spatial feature map Fs with only one channel, which needs to
remove the softmax function. Taking PAN as an example, we denote this variant
as “PAN-M (1C)”. The comparison results bewteen PAN-M and “PAN-M (1C)”,
on Urban100, Test2K, and Tesk4K at ×4 SR task, are listed in Table 3: PAN-M
outperforms clearly “PAN-M (1C)” on PSNR and SSIM, but with close FLOPs.
This shows the necessity to design a two-channel spatial feature map Fs.

2) Effectiveness of our MP module. To study this problem, we visualize
the mask predicted by our MP module in Figure 6. We observe that most of
the under-SR pixels are successfully predicted by our MP module. The ℓ1 error
between the predicted MASK and the “ground-truth” mask “MASK GT” (as
described in §3.5) is very small (i.e., 0.0346). This demonstrates that our MP
module can indeed accurately predict the error masks indicating under-SR areas.

3) How to train the mask-guided SR networks with our MP module?
To answer this question, we propose to train the mask-guided network with two
other strategies. The first is to train the mask-guided network with our MP
module end-to-end from scratch, denoted as “E2E”. The second is to train the
mask-guided network by the strategy introduced in §3.5, but without supervision
on our MP module in Step 3, denoted as “w/o S”. By taking FSRCNN for
example, the results listed in Table 4 show that FSRCNN-M achieves higher
PSNR and SSIM results than those of FSRCNN-M (E2E) and FSRCNN (w/o
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Table 4: Results of FSRCNN-M with different training strategies for
our Mask Prediction (MP) module on the Urban100, Test2K, and Test4K
datasets. “E2E”: end-to-end train the mask-guided network with our MP module
from scratch. “w/o S”: train our MP module separately in Step 3 (see §3.5)
without supervision. The scale factor is 2.

Method
Urban100 Test2K Test4K

PSNR SSIM FLOPs(G) PSNR SSIM FLOPs(G) PSNR SSIM FLOPs(G)

FSRCNN-B 29.15 0.8913 12.38 31.52 0.9107 28.65 33.32 0.9326 109.92

FSRCNN-M(E2E) 29.10 0.8910 13.63 31.50 0.9110 30.23 33.27 0.9326 113.15

FSRCNN-M(w/o S) 29.50 0.8970 13.63 31.64 0.9124 30.23 33.47 0.9341 113.15

FSRCNN-M 29.56 0.8973 13.63 31.67 0.9128 30.23 33.49 0.9343 113.15

FSRCNN-D 29.38 0.8951 23.80 31.62 0.9122 55.08 33.43 0.9337 211.33

Table 5: Results of PAN-M with different decomposing manners on the
Urban100, Test2K, and Test4K datasets. “a + b” means that the Base-Net has
a SCPA blocks and the Refine-Net has b SCPA blocks. The scale factor is 2.

Method
Urban100 Test2K Test4K

PSNR SSIM FLOPs(G) PSNR SSIM FLOPs(G) PSNR SSIM FLOPs(G)

PAN-M(10 + 6) 31.67 0.9236 50.58 32.41 0.9234 110.33 34.39 0.9428 408.74

PAN-M(12 + 4) 31.81 0.9252 55.14 32.45 0.9240 122.25 34.45 0.9433 457.42

PAN-M(14 + 2) 31.90 0.9263 59.69 32.50 0.9247 134.17 34.50 0.9439 506.09

PAN-D 31.86 0.9259 73.91 32.46 0.9242 171.09 34.48 0.9436 656.39

S). This validates the advantages of our training strategy in §3.5 over the two
variant strategies of “E2E” and “w/o S”, for our MGA scheme.

4) How the depths of the Base-Net and Refine-Net influence the SR
performance of the decomposed network? To study this problem, by taking
PAN for example, we compare the three mask-guided SR networks obtained by
decomposing the PAN-D into three variants: “PAN-M(10+6)” with 10 SCPAs in
Base-Net and 6 SCPAs in Refine-Net; “PAN-M(12+4)” with 12 SCPAs in Base-
Net and 4 SCPAs in Refine-Net; “PAN-M(14+2)” with 14 SCPAs in Base-Net
and 2 SCPAs in Refine-Net. The results listed in Table 5 show that, by varying
the depth of Refine-Net, our MGA scheme provides a flexible trade-off between
the capability (on PSNR/SSIM) and efficiency (FLOPs) of an SR network.

5) How does the size p of feature patches influence the performance
of the mask-guided SR networks? To this end, we compare the mask-
guided SR networks with different sizes of feature patches in our MGA scheme.
By taking FSRCNN for example, we implement the FSRCNN-M with p =
2, 4, 8 and denote the resulting variants as FSRCNN-M(2), FSRCNN-M(4), and
FSRCNN-M(8). The results are listed in Table 6. One can see that, on Urban100
and Test2K, FSRCNN-M(2) (or FSRCNN-M(4)) slightly outperforms FSRCNN-
M(4) (or FSRCNN-M(8)) with a little growth on FLOPs. In summary, larger p
reduces the FLOPs amount but usually degrades the SR performance.
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Table 6: Results of FSRCNN-M with different sizes of feature patches
(selected between MP module and Refine-Net) on the Urban100, Test2K,
and Test4K datasets. “2”: 2× 2. “4”: 4× 4. “8”: 8× 8. The scale factor is 4.

Method
Urban100 Test2K Test4K

PSNR SSIM FLOPs(G) PSNR SSIM FLOPs(G) PSNR SSIM FLOPs(G)

FSRCNN-B 24.32 0.7192 10.93 27.01 0.7499 25.43 28.22 0.7984 97.57

FSRCNN-M(2) 24.50 0.7264 14.73 27.08 0.7527 29.26 28.30 0.8003 101.82

FSRCNN-M(4) 24.50 0.7261 14.60 27.09 0.7523 29.19 28.31 0.8004 101.74

FSRCNN-M(8) 24.48 0.7226 14.52 27.07 0.7517 28.64 28.29 0.7999 101.71

FSRCNN-D 24.43 0.7230 21.63 27.06 0.7512 20.31 28.29 0.7997 193.01

Table 7: Results of RFDN-M with different orders of selecting K el-
ements from error mask, on the Urban100, Test2K, and Test4K datasets.
“S”, “R” or “L” means selecting K smaller, random or larger errors, respec-
tively. “All”: selecting all errors for each image. The scale factor is 2.

Method K=0 K=1000, S K=1000, R K=1000, L K=All/2, S K=All/2, R K=All/2, L K=All

Urban100
PSNR 31.99 31.99 32.01 32.26 32.03 32.14 32.36 32.36

SSIM 0.9265 0.9265 0.9270 0.9296 0.9273 0.9283 0.9304 0.9306

Test2K
PSNR 32.48 32.48 32.49 32.57 32.49 32.55 32.62 32.62

SSIM 0.9246 0.9246 0.9248 0.9254 0.9249 0.9253 0.9261 0.9262

Test4K
PSNR 34.51 34.51 34.53 34.59 34.53 34.59 34.66 34.66

SSIM 0.9440 0.9440 0.9441 0.9445 0.9441 0.9445 0.9451 0.9451

6) How does the order of selecting elements from error mask M in-
fluence our MGA on SR? In our MGA scheme, we select K largest elements
from the error mask M . To validate this point, we change the order of selecting
the K elements from “Larger” (L) to “Smaller” (S) or “Random” (R). By tak-
ing RFDN for example, we list the results of different variants in Table 7. We
observe that RFDN-M with “L” outperforms the other variants obviously. This
validates the effectiveness of selecting K largest elements in our MGA scheme.

5 Conclusion

In this paper, we proposed a Mask Guided Acceleration (MGA) scheme to ac-
celerate popular single image super-resolution (SR) networks. Our MGA scheme
decomposes an SR network into a Base-Net to extract a coarse feature and
a Refine-Net to refine the mostly under-SR areas. To locate these areas, we
designed a Mask Prediction module for error mask generation. Some feature
patches were selected accordingly from the coarse feature to trade-off model ca-
pability and efficiency. Experiments on seven benchmark datasets demonstrated
that, our MGA scheme largely reduces the computational costs of five SR net-
works with different complexities, while preserving well their SR capability.
Acknowledgements. This work was supported by The National Natural Sci-
ence Foundation of China (No. 62002176 and 62176068).
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