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Abstract. Existing deep learning based HDRTV reconstruction meth-
ods assume one kind of tone mapping operators (TMOs) as the degrada-
tion procedure to synthesize SDRTV-HDRTV pairs for supervised train-
ing. In this paper, we argue that, although traditional TMOs exploit effi-
cient dynamic range compression priors, they have several drawbacks on
modeling the realistic degradation: information over-preservation, color
bias and possible artifacts, making the trained reconstruction networks
hard to generalize well to real-world cases. To solve this problem, we
propose a learning-based data synthesis approach to learn the properties
of real-world SDRTVs by integrating several tone mapping priors into
both network structures and loss functions. In specific, we design a con-
ditioned two-stream network with prior tone mapping results as a guid-
ance to synthesize SDRTVs by both global and local transformations. To
train the data synthesis network, we form a novel self-supervised content
loss to constraint different aspects of the synthesized SDRTVs at regions
with different brightness distributions and an adversarial loss to empha-
size the details to be more realistic. To validate the effectiveness of our
approach, we synthesize SDRTV-HDRTV pairs with our method and use
them to train several HDRTV reconstruction networks. Then we collect
two inference datasets containing both labeled and unlabeled real-world
SDRTVs, respectively. Experimental results demonstrate that, the net-
works trained with our synthesized data generalize significantly better
to these two real-world datasets than existing solutions.

Keywords: Real-world HDRTV reconstruction, Data synthesis, Tone
mapping operators

1 Introduction

Recent years have seen the huge progress on ultra high-definition (UHD) display
devices such as OLED [14], which can display high dynamic range television
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Fig. 1. Illustration of the difference between the tasks LDR-to-HDR (at the imaging
side) and SDRTV-to-HDRTV (at the displaying side).

sources (HDRTVs) with high dynamic range (HDR, e.g., 10 bit quantization) and
wide color gamut (WCG, e.g., BT.2020 [19]). However, while such HDR display
devices (named HDR-TVs) become more popular, most available images/videos
are still standard dynamic range television sources (SDRTVs).

To this end, previous researches [4,43,26,13,12,31,34,44] focus on recovering
the linear and scene radiance maps from the captured sRGB sources, forming the
LDR-to-HDR problem defined at the imaging side, as shown in Fig. 1(a). Then
the scene radiance maps are transformed to HDRTVs via complicated post-
processing [24,25,9]. However, such post-processing has been not well-defined
for the standards of HDRTVs, resulting in severe color bias and artifacts [25,9].
Recently, researchers introduced deep learning techniques to straightforwardly
reconstruct HDRTVs from their corresponding SDRTVs [24,54,25,9], forming the
problem SDRTV-to-HDRTV at the dispalying side (Fig. 1(b)). Such solutions
need to train convolutional neural networks (CNNs) relying on SDRTV-HDRTV
pairs. Hence, the acquisition of such paired data becomes a vital problem.

There exists two possible ways to get SDRTV-HDRTV pairs: acquisition
by cameras and synthesis by algorithms. The former acquires SDRTV-HDRTV
pairs via asynchronous camera shots like those in super-resolution [7,5]. How-
ever, such approach faces difficulties to get large datasets for network training
due to its high sensitivity to motion and light condition changes. The latter
solution can be further divided into two categories: camera pipeline based and
tone mapping operator (TMO) based. Camera pipeline based approaches get the
scene radiance map first and then process it to SDRTV and HDRTV via differ-
ent processing pipelines. However, mostly the processing from light radiance to
HDRTV is unknown, which makes the solution unavailable [9]. In consequence,
existing SDRTV-to-HDRTV methods rely on TMOs [33,10,16,27,40,42,29] that
compress the dynamic range via global or local transformations as the degrada-
tion procedure to synthesize the SDRTV data.

However, through detailed analysis, we observe that, because TMOs aim at
preserving the information from HDRTVs as much as possible, they may inherit
too much information such as extreme-light details from HDRTVs, which often
do not appear in real-world SDRTVs. Such information over-preservation, as
shown in Fig. 2(a), is the main drawback of TMOs as SDRTV data synthesis
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Fig. 2. (a) Drawbacks on SDRTV data synthesis of two representative TMOs [1,47].
From top to bottom: information over-preservation, color bias and artifacts. (b) Re-
construction artifacts on real-world HDRTVs of the networks (HDRTVNet [9]) trained
with data synthesized by these two TMOs.

solutions. Moreover, most TMOs will also introduce color bias due to inaccurate
gamut mapping and obvious artifacts such as wrong structures. Accordingly, the
HDRTV reconstruction networks trained by TMO-synthesized SDRTV-HDRTV
pairs are hard to generalize well to real-world cases as shown in Fig. 2(b).

To solve this problem, we propose an learning-based SDRTV data synthe-
sis approach to synthesize realistic SDRTV-HDRTV pairs. Inspired by real-
world degradation learning with the help of predefined degradations in super-
resolution [52,35,8], we exploit the tone mapping priors in our method for both
network structures and loss functions.

In specific, we model the SDRTV data synthesis with two streams, i.e., a
global mapping stream and a local adjustment one and use some representative
tone mapping results to generate global guidance information for better HDRTV-
to-SDRTV conversion. To train the network, we utilize different tone mapping
results as the supervisor for regions with different light conditions, forming a
novel unsupervised content loss to constraint different aspects of the synthesized
SDRTVs. We also introduce an adversarial loss to emphasize the synthesized
SDRTVs to be more realistic.

To validate the effectiveness of our approach, we synthesize SDRTV-HDRTV
pairs using our method and use them to train several HDRTV reconstruc-
tion networks. For inference, we collect two inference datasets containing la-
beled SDRTVs captured by a smartphone and unlabeled SDRTVs from public
datasets [25]. Quantitative and qualitative experimental results on these two in-
ference datasets demonstrate that, the networks trained with our synthesized
data can achieve significantly better performance than those with other data
synthesis approaches.

2 Related Work

SDRTV-to-HDRTV methods. SDRTV-to-HDRTV is a highly ill-posed prob-
lem since the complicated degradation from HDRTVs to SDRTVs. While early
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Fig. 3. The scatters showing statistical relationships between PSNR (a) and CIEDE-
2000 [45] (b) w.r.t TMQI [53], respectively. We use solid lines and dotted lines to
represent the trend and the turning point of trend changes, respectively. These metrics
are evaluated and averaged on our collected RealHDRTV dataset.

researches aim at restoring HDR radiance map from a low dynamic range (LDR)
input, which is called inverse tone mapping [4,43,26,13,12,31,34,44], they only
consider HDR reconstruction at the imaging side and ignore the color gamut
transform. Recently, SDRTV-to-HDRTV with deep learning techniques relying
on synthesized SDRTV data becomes popular [24,25,9]. In this paper, we focus
on the solution of data synthesis for real-world HDRTV reconstruction.
Tone mapping operators. TMOs aim at compressing the dynamic range of
HDR sources but preserve image details as much as possible. Traditional TMOs
always involve some useful tone mapping priors such as the Weber-Fechner
law [11] and the Retinex Theory [28] to make either global mappings [42,16,1] or
local mappings [10,27,33,40,29]. Recently, learning-based TMOs become pop-
ular due to their remarkable performance. They rely on ranking traditional
TMOs [41,6,39,38,56] as labels for fully supervision or unpaired datasets for ad-
versarial learning [47]. In this paper, we argue that TMOs have several drawbacks
for realistic HDRTV data synthesis. Accordingly, we propose a learning-based
method integrating tone mapping priors to solve these drawbacks.

3 Motivation

As we all know, the core target of TMOs is to preserve as much information as
possible from the HDR sources. However, the essential of the degradation from
HDRTVs to SDRTVs is to lose information selectively, i.e., drop out details at
extreme-light regions. Thus sometimes a contradiction will occur when we use
TMOs to model the degradation. To get a deep-in understanding of this problem,
we make an evaluation on 31 TMOs (detailed in the supplementary material)
with our RealHDRTV dataset (detailed in Sec. 5.1).

Specifically, we use TMQI [53] (higher is better), which is mostly used for
the evaluations of TMOs, to evaluate the amount of information an SDRTV
preserves from the corresponding HDRTV. Meanwhile, we use PSNR (higher is
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Fig. 4. Our proposed SDRTV data synthesis approach. We integrate several tone map-
ping priors into this framework, resulting a two-stream data synthesis network condi-
tioned by prior tone mapping results and a novel content loss function formulated by
tone mapping priors.

better) and CIEDE-2000 [45] (lower is better) to evaluate the distance between
a synthesized SDRTV and the ground truth real-world one. We draw the eval-
uation results averaged over the RealHDRTV dataset to two scatters in Fig. 3
where each point represents a TMO.

Interestingly, we can see that, on our RealHDRTV dataset, when the TMQI
of a TMO exceeds a threshold at about 0.8, the distance between synthesized
and real-world data turns to increase. It indicates that the information preserved
by this TMO may be too much compared with realistic SDRTVs. We can also
observe such information over-preservation in Fig. 2(a). Such drawback may lead
the trained HDRTV reconstruction networks fail to hallucinate the extreme-light
details in real-world cases as shown in Fig. 2(b).

Moreover, most TMOs transform the color gamut by simple transformation
matrix [20] or color channel rescaling [47], resulting obvious color bias, let alone
possible artifacts such as halo, wrong structures and color banding occur for most
TMOs [47]. The data synthesized by TMOs will lead the trained reconstruction
network to generate artifacts in real-world cases as shown in Fig. 2(b).

Motivated by these drawbacks of TMOs on realistic SDRTV data synthesis,
we propose a learning-based approach to synthesize training data for better
HDRTV reconstruction in real-world cases.

4 Learning-based SDRTV Data Synthesis

Fig. 4 illustrates the framework of our data synthesis method. Inspired by learn-
ing real-world degradation with the help of predefined downsampling methods
in the field of image super-resolution [35,8,52], we involve the prior knowledge
for designing TMOs to our framework. Although these priors themselves cannot
be used for straightforward degradation modeling, some of them can provide re-
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gional constraints or global guidance to benefit our learning. Thus, we integrate
several tone mapping priors into both network structures and loss functions.

4.1 Conditioned two-stream network

Given an input HDRTVH ∈ RX×Y×3 whereX and Y denote the image size, our
network N aims to convert it into an SDRTV S ∈ RX×Y×3 whose properties
are similar as the real-world SDRTVs. Considering that we need both global
transformations such as color gamut mapping and local adjustments such as
selective detail preservation at extreme-light regions, our network N includes a
global mapping stream Ng and a local adjustment stream Nl as shown in Fig. 4.

The global stream Ng is composed of three 1×1 convolutions which performs
similarly as global TMOs with 3DLUTs [1] or S-curves [42,16]. Such network has
been validated effective for global color [9] and style [17] transformations. The
other stream Nl is composed of three highlight-aware convolution blocks (HA-
conv, detailed in the supplementary material), which shows superior performance
on the task sensitive to extreme-light regions such as SVBRDF estimation [15].
For simplicity of the data synthesis network, we straightforwardly add the results
of global and the local stream together to get the final synthesized SDRTVs.

Moreover, to benefit the learning, we involve the prior knowledge of existing
TMOs into these two streams. For each input HDRTV H, we obtain a number
of tone mapped versions {Si|i = 1, 2, · · · ,K} as the condition to guide the data
synthesis. Specifically, we concatenate these condition images and feed them into
a condition network Nc. The condition network is composed of three convolution
layers with large kernel sizes and strides followed by a global average pooling
layer. The pooling layer will output a 1D condition vector vc ∈ RB×Ccond where
B and Ccond denote the batch size and the channel number, respectively.

Because the condition vector embeds sufficient global information of the prior
tone mapping results, it is then used to modulate the main branch of the two
stream network N . For the output feature maps F ∈ RB×Cfeat×X×Y of each
layer/block in the global/local stream where Cfeat denotes the channel number,
we use a fully connected layer to transform vc to scale factors ω1 ∈ RB×Cfeat

and shift factors ω2 ∈ RB×Cfeat and modulate the feature maps F via global
feature modulation (GFM) [17], which can be described as:

Fmod = F ∗ ω1 + ω2. (1)

Note that we do not share the fully connected layers used for Ng and Nl, they
can provide different guidances for different transformation granularities.

4.2 Hybrid tone mapping prior loss

As analyzed in Sec. 3, the synthesized SDRTVs should have several aspects:
globally compressed dynamic range, accurate color gamut and lost details at
extreme-light regions. However, there are no paired HDRTV-SDRTV datasets
and the acquisition of large-scale and high-quality datasets for training with
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imaging devices is also difficult. Therefore, we follow these region-aware aspects
and divide the whole image into several regions according to their brightness dis-
tributions. After that, we transform the input HDRTVs with existing TMOs to
get weak supervisors for different regions, forming a novel content loss function,
namely hybrid tone mapping prior (HTMP) loss (Lhtmp).
Region division. At the very first, we divide the input HDRTV H into three
regions, i.e., the high-, mid- and low-light regions. Specifically, we get the light
radiance L by linearizing H with a PQ EOTF [21] and segment the radiance
map into three regions by two truncation points α and β, which are the a-th
and b-th percentiles of the radiance map’s histogram, respectively. The resulting
region division masks are calculated as:

Mhigh = I(L > a),Mlow = I(L < b),Mmid = 1−Mhigh −Mlow, (2)

where I(·) denotes the indicative function and 1 is a all-one map.
High-light loss. For the high-light regions, the output SDRTV should be
saturated. Thus we use a all-one map as the supervisor at this region as:

Lhigh = ∥Mhigh ⊙ (1−N(H))∥1, (3)

where ⊙ means element-wise production. Note that, although the supervisor at
the high-light regions is a all-one map, due to the fact that CNNs have denoising
and smoothing effects [46], the resultant SDRTVs will become smooth here.
Low-light loss. For the low-light regions, the output SDRTV should linearly
compress the radiance due to its lower bit width. Thus we use the results of a
simple TMO Linear [51] l· as the supervisor:

Llow = ∥Mlow ⊙ (l(H)−N(H))∥1. (4)

Mid-light loss. For the mid-light regions, we need to consider both global
dynamic range compression and accurate color gamut. However, there is no
proper TMO for both properties. Thus we combine two TMOs to achieve this
goal. In specific, we firstly use a µ-law function [23] µ(·) after global color gamut
mapping [20] CGM(·). Since the µ-law function is a logarithm curve, which is
similar to the compressive response to light in the human visual system, i.e., the
Weber-Fechner law [11], it can provide a visually pleasant global transformation
for dynamic range compression and preserve low-light details by stretching the
brightness. Meanwhile, such stretching will lead to under-saturated color, so we
then introduce another TMO Youtube [1] y(·), which uses 3D lookup tables
predefined by Youtube tools for online film showcase. Youtube can provide vivid
but sometimes over-saturated color. Moreover, due to its point-wise processing
nature, Youtube will generate discontinuous textures near the high-light regions.
Because the µ-law function and Youtube are complementary to each other, we
use an invert µ-law function, i.e., µ−1(·) with the normalized linear radiance as
input to generate a weighting matrix W = µ−1(L−β

α−β ). So the loss function at
the mid-light regions can be described as:

Lmid = ∥Mmid ⊙ (W ⊙ µ(CGM(H)) + (1−W )⊙ y(H))−N(H)∥1. (5)
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Finally, we add the above three loss functions, forming our HTMP loss via
Lhtmp = Lhigh + Lmid + Llow. We also illustrate a flowchart of our HTMP loss
for a more intuitive understanding in the supplementary material.

4.3 Adversarial loss

With the content loss Lhtmp, the network has had the ability to model the region-
aware properties of realistic SDRTVs. To further emphasize the synthesized
SDRTVs to be more realistic, we introduce an additional adversarial loss with a
discriminator following the GAN-based low-level researches [30]. Specifically, we
collect a large real-world SDRTV dataset S containing 3603 4K SDRTVs from
public datasets [25]. We split the dataset into train and inference subsets Strain

and Stest while the latter contains 25 SDRTVs. The dataset S contains SDRTVs
captured in different environments and with different devices.

During the adversarial training, we utilize the least square GAN approach [37]
with a 70 × 70 PatchGAN [18,30,32,57] and the overall loss function for the
generator network N is LN = Lhtmp + λLadv, where λ is a weighting factor.
More implementation details can be found in the supplementary material.

5 Experimental results

5.1 Experimental settings

For the training of our SDRTV data synthesis network N , we collect a dataset H
containing 3679 HDRTVs (BT.2020 with PQ EOTF [20]) from public datasets [25]
as the input of network N . To validate the effectiveness of our the trained data
synthesis network, we firstly train several HDRTV reconstruction networks using
the SDRTV-HDRTV pairs synthesized by our well-trained N . Then we inference
these networks on two real-world SDRTV datasets to see the generalization abil-
ity of trained networks.
Datasets. With the unlabeled inference dataset Stest introduced in Sec. 4.3,
we can only make visual comparisons and user study to validate the qual-
ity of reconstructed HDRTVs. In order to make full-reference evaluations, we
also capture a dataset, named RealHDRTV, containing SDRTV-HDRTV pairs.
Specifically, we capture 93 SDRTV-HDRTV pairs with 8K resolutions using a
smartphone camera with the “SDR” and “HDR10” modes. To avoid possible
misalignment, we use a professional steady tripod and only capture indoor or
controlled static scenes. After the acquisition, we cut out regions with obvious
motions (10+ pixels) and light condition changes, crop them into 4K image
pairs and use a global 2D translation to align the cropped image pairs [7].
Finally, we remove the pairs which are still with obvious misalignment and
get 97 4K SDRTV-HDRTV pairs with misalignment no more than 1 pixel as
our labeled inference dataset. We’ve release the RealHDRTV dataset in https:

//github.com/huawei-noah/benchmark. More details about the dataset acqui-
sition and post-processing can be found in the supplementary material.

https://github.com/huawei-noah/benchmark
https://github.com/huawei-noah/benchmark
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Data synthesis baselines. As for baseline SDRTV synthesis methods, we use
three traditional TMOs, i.e., Youtube [1], Hable [16] and Raman [40] because
they are often used for film showcase in different online video platforms. We then
collect other 27 traditional TMOs (detailed in the supplementary material) and
rank the 30 TMOs using TMQI [53] and choose the best one as a new baseline
named Rank following [41,6,39,38]. In addition, the state-of-the-art learning-
based TMO, named UTMNet [47] is also involved here for SDRTV synthesis.
HDRTV reconstruction networks. We use the public HDRTV dataset
HDRTV1K [9] as the input of both our well-trained network N and other five
baselines to synthesize SDRTV-HDRTV pairs. As a result, we get 6 datasets
named after their synthesis methods to train HDRTV reconstruction networks.
Specifically, we choose four state-of-the-art networks (JSI-Net [25], CSRNet [17],
SpatialA3DLUT [48], and HDRTVNet-AGCM [9]). To compare with existing un-
paired learning-based reconstruction methods, we also involve CycleGAN [57] as
another reconstruction network. Note that because CycleGAN has no explicit
modeling of the unique relationships between SDRTVs and HDRTVs, we do
not involve it as a data synthesis baseline. The implementation details of these
networks can be found in the supplementary material.
Evaluation metrics. With the labeled dataset, i.e., our RealHDRTV dataset,
we evaluate the reconstructed HDRTVs using several metrics for fidelity, per-
ceptual quality and color difference. For fidelity, we use PSNR, mPSNR [3],
SSIM [49], and MS-SSIM [50]. For perceptual quality, we use HDR-VDP-3 [36]
and SR-SIM [55] because they are highly correlated to the human perceptions
for HDRTVs [2]. For color difference, we utilize △EITP [22] which is designed
for the color gamut BT.2020. For visualization, we visualize HDRTVs without
any post-processing following [9] to keep the details in extreme-light regions.

5.2 Generalize to labeled real-world SDRTVs

Quantitative results. Quantitative results on the generalization to our Re-
alHDRTV dataset are shown in Table 1. As we can see, for each network, the
version trained by paired data synthesized by our method works the best in terms
of every evaluation metric and achieves significant gains over the baseline meth-
ods. Taking HDRTVNet-AGCM [9], the state-of-the-art HDRTV reconstruction
network, as an example, compared with the best-performed TMO Hable [16], our
method gains 2.60dB, 0.014 and 6.7 in terms of PSNR, SR-SIM and △EITP ,
respectively. Such results validate that, with our synthesized training data, the
networks can generalize well to the real-world SDRTVs. Note that there are still
small misalignment between SDRTVs and HDRTVs within this dataset, the ab-
solute full-reference metrics will be not as high as those well-aligned ones, but
the metric difference can still reflect the superiority of our method.
Qualitative results. We also show some visual examples in Fig. 5, we can see
that, with CycleGAN, the reconstructed HDRTVs suffer from severe color bias
and lose details at extreme light regions, which is consistent with the results
shown in Table 1. Although the cycle consistency has been proved useful for
style transfer [57], the real-world HDRTV reconstruction does not work well
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Network TrainData PSNR↑ mPSNR↑ SSIM↑ MS-
SSIM

↑ HDR-
VDP3

↑ SR-
SIM

↑ △EITP ↓

JSI-Net [25]

Raman [40] 18.91 13.23 0.708 0.719 3.54 0.736 74.2
Rank 17.75 11.42 0.680 0.668 4.16 0.723 81.9

UTMNet [47] 15.68 8.09 0.598 0.737 4.26 0.753 107.3
Youtube [1] 25.47 18.56 0.842 0.923 6.32 0.942 33.6
Hable [16] 25.45 19.60 0.851 0.918 5.71 0.926 33.8

Ours 27.80 22.92 0.878 0.933 6.38 0.943 27.2

CSRNet [17]

Raman [40] 15.16 9.04 0.628 0.868 5.16 0.843 131.3
Rank 19.41 13.43 0.749 0.912 6.28 0.929 84.0

UTMNet [47] 12.37 5.40 0.433 0.829 4.63 0.815 172.2
Youtube [1] 25.29 18.30 0.834 0.923 6.36 0.945 34.2
Hable [16] 25.34 19.45 0.847 0.925 6.35 0.942 33.8

Ours 27.73 22.65 0.874 0.935 6.43 0.950 27.2

Spatial-
A3DLUT [48]

Raman [40] 15.35 10.77 0.726 0.882 5.61 0.852 117.4
Rank 22.68 16.74 0.829 0.920 5.90 0.931 50.1

UTMNet [47] 18.55 13.51 0.805 0.924 6.04 0.910 84.2
Youtube [1] 25.27 18.23 0.832 0.921 6.34 0.943 34.2
Hable [16] 25.48 19.40 0.846 0.924 6.35 0.942 33.5

Ours 27.56 22.44 0.871 0.933 6.37 0.945 27.7

HDRTVNet-
AGCM [9]

Raman [40] 19.35 13.61 0.749 0.902 5.90 0.904 88.6
Rank 19.73 14.06 0.778 0.917 6.16 0.936 77.5

UTMNet [47] 16.34 10.43 0.649 0.887 5.39 0.868 112.4
Youtube [1] 25.26 18.29 0.833 0.922 6.36 0.945 34.1
Hable [16] 25.44 19.48 0.847 0.925 6.36 0.943 33.6

Ours 28.04 22.82 0.876 0.938 6.47 0.957 26.9
CycleGAN [57] — 10.70 8.90 0.743 0.891 5.59 0.862 203.7

Table 1. Evaluation results of the HDRTV reconstruction results on the RealHDRTV
dataset via various networks trained on datasets synthesized by different SDRTV data
synthesis methods.

SDRTV Raman Rank UTMNet Youtube Hable CycleGAN Ours GT

Fig. 5. Visual comparisons on real-world SDRTV-HDRTV pairs and the HDRTVs
reconstructed by HDRTVNet-AGCM [9] trained with different data synthesis methods.
The images are from our RealHDRTV dataset. Zoom in the figure for a better visual
experience.

with such constraint. In contrast, by exploiting several tone mapping priors as
both constraints and guidance, our method can perform pretty well in real-world
cases. While the networks trained with data synthesized by other methods show
weak ability to recover the low-light region and expand the accurate color gamut,
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Hable Youtube Ours Total
Hable – 125 70 195

Youtube 150 – 83 233
Ours 205 192 – 397

Table 2. The preference matrix from the user study on the unlabeled real-world dataset
Stest.

SDRTV Youtube Hable Ours

Fig. 6. Visual comparisons on the HDRTVs reconstructed by HDRTVNet-AGCM [9]
trained with data synthesized by Youtube [1], Hable [16] and Ours. The input SDRTVs
are from the dataset Stest. Zoom in the figure for a better visual experience.

the network trained by our dataset show significant advantage over them and
produce results much more close to the ground truth.

5.3 Generalize to unlabeled real-world SDRTVs

We also reveal the generalization ability of the networks trained with our syn-
thesized dataset in a more open situation, we compare the performance of three
versions (Hable, Youtube, and Ours) of the network HDRTVNet-AGCM on the
unlabeled inference dataset Stest collected from public datasets [25].
User study. We conduct a user study on the reconstructed HDRTVs with 11
professional photographers for subjective evaluation. Each participant is asked to
make pairwise comparisons on 3 results of each image displayed on an HDR-TV
(EIZO ColorEdge CG319X with a peak brightness of 1000 nits) in a darkroom.
The detailed settings can be found in the supplementary material. We show the
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PSNR↑ SSIM ↑ CIEDE ↓ TMQI ↑
Clip 13.82 0.719 18.68 0.7477

Linear [51] 16.46 0.758 15.15 0.7353
Reinhard [42] 19.94 0.776 10.65 0.8194
Raman [40] 20.97 0.627 9.52 0.7759
Kuang [27] 20.92 0.717 9.35 0.7804
Youtube [1] 22.99 0.824 6.83 0.7940
Hable [16] 23.27 0.840 6.38 0.7822
Liang [33] 16.21 0.676 14.81 0.8807
Rank [41] 16.57 0.692 14.32 0.8850

UTMNet [47] 15.77 0.681 16.14 0.8747
Ours 24.54 0.844 5.80 0.7988

Table 3. Evaluation metrics on fidelity and color difference between the SDRTVs
synthesized by several methods and the ground truth ones on our RealHDRTV dataset.

preference matrix in Table 2. We can see that, when comparing our method with
the best-performed TMOs, i.e., Hable and Youtube, 74.5% and 69.8% of users
prefer our results, respectively.
Qualitative results. We also show some examples for visual comparison in
Fig. 6. We can find that while the networks trained by Youtube’s and Hable’s
data has less awareness of high-light (the top two) and low-light (the bottom
two) regions, the network trained by our data can enrich the details as well as
preserve continuous structures.

To sum up, while the training datasets for both our data synthesis network
and the HDRTV reconstruction networks have no overlap with our RealHDRTV
and Stest datasets, the networks trained by our data show notable performance
gains in both numerical and visual comparisons as well as the user study. It
indicates that, our approach can serve as a better solution for paired SDRTV-
HDRTV synthesis towards real-world HDRTV reconstruction.

5.4 The quality of synthesized SDRTVs

In addition to the generalization evaluations of networks trained by our data,
we also evaluate the quality of synthesized SDRTVs. Specifically, we feed the
HDRTVs in our RealHDRTV dataset into our well-trained data synthesis net-
work and evaluate the distance and difference between our synthesized SDRTVs
and the real-world ones. We evaluate the distances in terms of fidelity metrics
PSNR and SSIM [49] and color difference for color gamut BT.709, i.e., CIEDE-
2000 [45]. Following the experiment in Sec. 3, we also calculate TMQI [53] to
evaluate the ability of information preservation from HDRTVs. Besides the base-
lines compared in Sec. 5.2 and Sec. 5.3, we involve more representative TMOs
for the comparison as shown in Table 3.

We can observe that, although the state-of-the-art TMOs like Liang [33]
and UTMNet [47] have significantly high TMQI values, the SDRTVs generated
by them are far away from the ground truth SDRTVs. On the contrary, the
SDRTVs generated by our method shows much better fidelity and color accuracy
by 1.27dB gain of PSNR and 0.58 drop of CIEDE-2000 compared with the best
performed TMO Hable [16]. Such results are consistent with what we observe in
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HDRTV Clip Linear Reinhard Youtube Rank UTMNet Hable Ours GT

Fig. 7. Visual comparisons on SDRTVs synthesized by different representative synthe-
sis methods together with the input HDRTVs and ground truth SDRTVs. The images
are from our RealHDRTV dataset. Zoom in the figure for a better visual experience.

Fig. 3 and interestingly, we find that our average TMQI value is pretty close to
the turning point in the scatters, i.e., about 0.8 for this dataset. It reveals our
success on avoiding information over-preservation.

We also show some visual examples in Fig. 7. We can see that, compared
with the ground truth SDRTVs, the information over-preservation (e.g., Clip and
Rank for the top example), color bias (e.g., Hable and UTMNet for the middle
example) and artifacts (e.g., Reinhard and Linear in the bottom example) are
very obvious. Meanwhile, our method can selectively preserve the information
from the HDRTVs, transform color gamut accurately and avoid the artifacts.

5.5 Ablation

With the evaluations on synthesized SDRTVs, we’d like to show some ablation
studies about the network structures and loss functions, particularly the effects
on the tone mapping priors we utilize in our framework. We compare the values of
PSNR and CIEDE-2000 [45] calculated on the synthesized SDRTVs by different
variants in Table 4 and show visual comparisons in the supplementary material.
Network design. We conduct several experiments to validate the effective-
ness of tone mapping priors used for network designs. Specifically, we remove the
condition network or use the input HDRTV itself to replace the condition tone
mapping results to keep the parameter numbers the same. We can see in Ta-
ble 4 that the condition network as well as the condition tone mapping results
make very important contributions to more accurate real-world data synthe-
sis. As Fig. 7 shows that, the condition TMOs, i.e., Clip, Linear, Reinhard and
Youtube we use here shows different performance advantages at different regions.
For example, Linear performs very well at losing low-light details. Meanwhile,
our method apparently take merits of these conditions, which validates the im-
portance of them again. In addition, the ablation results on only the global or
local stream validate the effectiveness of combining them, the visual results in
the supplementary material also validate the advantages of these two streams
on global and local mappings, respectively.
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Loss Network
PSNR CIEDELhtmp Ladv Nc Nl Ng

✓ ✓ ✓ ✓ ✓ 24.54 5.80
× ✓ ✓ ✓ ✓ 11.74 27.01
✓ × ✓ ✓ ✓ 24.24 6.00

S-Linear ✓ ✓ ✓ ✓ 16.35 15.33
S-µ-law ✓ ✓ ✓ ✓ 18.18 12.42

S-Youtube ✓ ✓ ✓ ✓ 23.32 6.64
✓ ✓ × ✓ ✓ 24.08 6.03
✓ ✓ Self ✓ ✓ 24.15 5.97
✓ ✓ ✓ × ✓ 24.33 5.99
✓ ✓ ✓ ✓ × 24.44 5.83

Table 4. Ablation study on the RealHDRTV dataset.

Loss function. As we can see in the table, if we only use Ladv to train the
network, the network will synthesize SDRTVs far away from the real-world ones
due to the lack of content and structure constraints. However, it does not mean
that Ladv is useless, we can see that with the help of Ladv, the network with only
Lhtmp achieves a notable performance gain. In addition, to show the impacts on
the involved TMOs for Lhtmp, we use simple L1 loss function between the tone
mapping results of each TMO as the content loss to replace Lhtmp. As we can
see in the table, with either TMO as the supervisor, the network performance
will be inferior than our Lhtmp. Such results validate the effectiveness of our
region-aware content loss. We also show a visual example in the supplementary
material to illustrate their complementarity.

6 Conclusion

In this paper, we propose a data synthesis approach to synthesize realistic
SDRTV-HDRTV pairs for the training of HDRTV reconstruction networks to
benefit their generalization ability on real-world cases. Through statistical and
visual analysis, we observe that, existing TMOs suffer from several drawbacks
on the modeling of HDRTV-to-SDRTV including information over-preservation,
color bias and artifacts. To solve this problem, we propose a learning-based
SDRTV data synthesis to learn the aspects of real-world SDRTVs. We integrate
several tone mapping priors into both network structures and loss functions to
benefit the learning. Experimental results on our collected labeled and unlabeled
datasets validate that, the HDRTV reconstruction networks trained by our syn-
thesized dataset can generalize significantly better than other methods. In ad-
dition, we believe that integrating degradation priors into degradation learning
framework may also be promoted to benefit other low-level vision tasks.
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