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1 Overview

We present additional results in this supplementary document. First, we show
the detailed network configurations in Section 2. Second, we provide further
detailed analysis on the effect of the proposed critical components in our method
(Section 4). Then we show more qualitative comparisons of the state-of-the-art
methods and our models (Section 5). Finally, Section 6 shows some failure cases
and analyzes the limitations of the proposed method.

2 Detailed Network Configurations

We show the detailed network configurations in Table 1.

Table 1: Architecture of the proposed DSDNet. “conv”,“tconv”, “Max-Pool”
and “Avg-Pool” denote the convolutional layer, transposed convolutional layer,
Max Pooling layer and Average Pooling layer, respectively. We describe the
parameters of these layers. We use 1× 1 kernels in “HypNet” as the bottleneck
of the Inception Net [12].

NF NG Maxout CGNet NLNet HypNet

conv kernel 7× 7 7× 7 3× 3 3× 3 3× 3
3× 3
1× 1

tconv
kernel 3× 3
stride 2× 2

Max-Pool
kernel 4× 1× 1 3× 3
stride 4× 1× 1 2× 2

Avg-Pool kernel 3× 3

ReLU ✓ ✓ ✓

SoftPlus
β 1
threshold 20

Sigmoid ✓
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3 Robustness to Variant Kernel Sizes

We evaluate our method on Set5 using 100 kernels with sizes from 13 × 13
pixels to 35× 35 pixels. Fig. 1 shows that our method performs better than the
evaluated methods even when the blur kernel size is large. The non-E2E methods
DRUNet and IRCNN and the E2E methods DWDN are compared with ours.
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Fig. 1: PSNR versus kernel size.

4 More Ablation Studies

We show some intermediate results in Fig. 2, 3 and 4 based on the full-weighted
model to better understand what the proposed network learns. In Fig. 2, we show
the learned F and G. We use the Baby image from Set5 [1] as an example and
compute the feature maps. Fig. 3 and Fig. 4 show the regularization-related and
data-related feature maps, respectively.

In Table 2, we show the complete ablation study in PSNR and SSIM on
the datasets Levin [6], BSD100 [7] and Set5 [1] based on the heavy-weighted
model consistently with Section 5.5 of the manuscript. The manuscript states
that we include the ablation studies w.r.t. HypNet and NLNet in the supple-
mental material. In addition, we replace the Maxout layers with soft-shrinkage
functions (e.g., ℓ1-norm in Table 2 and Figure 5) and compare them to cascade



Supplementary Materiels: DSDNet 3

(a) F of the first stage (b) F of the second stage(c) F of the third stage (d) F of the latest stage

(e) G of the first stage (f) G of the second stage(g) G of the third stage(h) G of the latest stage

Fig. 2: Learned filters of NF and NG.

shrinkage fields (CSF) [11] to demonstrate the effectiveness of Maxout layers
against conventional shrinkage functions.

Table 2: Average PSNR(dB)/SSIM of the deblurring results with Gaussian noise
using different methods. We highlight the best results. “CSF” denotes the result
of [11], “w/o F,G”, “ReLU”, “RBF”, “CG”, “CG†”, “FFT” and “FFT†” are
the extended results of Table 5 of the manuscript; “w/o HypNet” and “w/o
NLNet” are results of the models without these parts, respectively; “ℓ1-norm”
replaces the Maxout layers with soft-shrinkage functions, i.e., the Ri’s and Rj ’s
in Equation (8) of the manuscript are all in the form of ℓ1-norm regularization.
Dataset noise

CSF [11] w/o F,G ReLU RBF CG CG† FFT FFT† ℓ1-norm w/o HypNet w/o NLNet DSDNet(Heavy)
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Levin
[6]

1% 30.22 / 0.888 27.70 / 0.742 35.85 / 0.961 35.89 / 0.961 31.24 / 0.905 34.97 / 0.954 32.45 / 0.936 33.02 / 0.944 35.88 / 0.961 35.85 / 0.960 35.98 / 0.962 36.07 / 0.962
3% 27.37 / 0.792 20.07 / 0.382 32.53 / 0.922 32.54 / 0.920 29.15 / 0.830 31.82 / 0.911 29.86 / 0.881 30.72 / 0.900 32.43 / 0.919 32.36 / 0.918 32.54 / 0.921 32.59 / 0.922
5% 25.99 / 0.737 16.10 / 0.229 30.67 / 0.889 30.69 / 0.888 26.54 / 0.708 30.01 / 0.874 28.14 / 0.832 29.25 / 0.864 30.59 / 0.887 30.47 / 0.884 30.70 / 0.889 30.71 / 0.889

BSD100
[7]

1% 28.46 / 0.807 27.16 / 0.738 31.28 / 0.887 31.76 / 0.894 28.08 / 0.795 31.43 / 0.886 30.27 / 0.869 30.89 / 0.883 31.78 / 0.895 31.72 / 0.894 31.77 / 0.895 31.83 / 0.896
3% 26.25 / 0.702 20.72 / 0.412 28.32 / 0.788 28.95 / 0.815 27.02 / 0.734 28.70 / 0.807 27.84 / 0.774 28.41 / 0.803 28.92 / 0.815 28.87 / 0.813 28.93 / 0.815 28.97 / 0.816
5% 25.22 / 0.648 17.19 / 0.275 27.03 / 0.737 27.85 / 0.777 25.60 / 0.649 27.62 / 0.769 26.58 / 0.712 27.44 / 0.767 27.83 / 0.777 27.78 / 0.776 27.85 / 0.778 27.87 / 0.779

Set5
[1]

1% 29.75 / 0.842 26.66 / 0.683 32.78 / 0.898 32.98 / 0.901 29.07 / 0.834 32.39 / 0.893 31.30 / 0.876 32.03 / 0.892 33.02 / 0.900 32.97 / 0.899 33.03 / 0.901 33.11 / 0.902
3% 26.94 / 0.752 19.40 / 0.354 30.05 / 0.844 30.14 / 0.846 27.67 / 0.761 29.51 / 0.834 28.45 / 0.800 29.32 / 0.832 30.07 / 0.844 29.95 / 0.842 30.10 / 0.844 30.16 / 0.847
5% 25.62 / 0.701 15.76 / 0.233 28.60 / 0.806 28.65 / 0.808 27.64 / 0.720 28.00 / 0.793 26.93 / 0.752 27.82 / 0.787 28.62 / 0.806 28.47 / 0.803 28.65 / 0.806 28.65 / 0.808

Fig. 5 shows the visual comparisons of the baseline methods, where this work
generates a clearer image that is visually close to the ground truth.
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Fig. 3: The regularization-related feature maps before (top row) and after (bot-
tom row) the Maxout layers. As regularization-related terms are learned to keep
the structure of images, we can observe the strong edges in the figure. The Max-
out layers enhance the edges.
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Fig. 4: Data-related feature maps before (top row) and after (bottom row) the
Maxout layers. As data-related terms are learned to eliminate the reconstruction
error and noise, we can observe the sparsity in the figure. The Maxout layers
enhance the sparsity.
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(a) w/o F,G (b) ReLU (c) RBF (d) CG (e) CG† (f) FFT

(g) FFT† (h) ℓ1-norm (i) w/o HypNet (j) w/o NLNet (k) DSDNet (l) Ground truth

Fig. 5: Qualitative ablation study on the BSD100 dataset [7] with 1% Gaus-
sian noise. We note that the method without using the learned filters generates
significant artifacts, as shown in (a). The method using RBFs generates over-
smoothed results, as shown in (c). The ReLU does not discriminatively keep
the most valuable features, so it does not restore the details well (see (b)). The
results of original CG in (d) and (f) still contain ringing artifacts. As mentioned
in the manuscript, FFT-based methods (f) and (g) generate ring artifacts even
with edge taper, where (g) is more severe than (e). The models without HypNet
and NLNet do not effectively restore the patterns as shown in the green boxes in
(i) and (j). (h) shows the result of soft-shrinkage functions which do not preserve
details well. (b), (c) and (h) demonstrate the effectiveness of Maxout layers. The
proposed method (k) generates a better result that is visually close to the ground
truth.
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5 More Qualitative Evaluation

In this section, we present more visual comparisons of the proposed method and
state-of-the-art ones.

(a) Blurry input (b) IRCNN [14] (c) ADM UDM [4] (d) KerUNC [8]

(e) VEM [9] (f) DWDN [2] (g) SVMAP [3] (h) DRUNet [13]

(i) DSDNet (Light) (j) DSDNet (Heavy) (k) DSDNet (Full) (l) Ground truth

Fig. 6: Qualitative evaluation of 1% Gaussian noise on BSD100 [7]. The result
by the IRCNN [14] contains some artifacts. The other evaluated methods do
not effectively restore the structural details. In contrast, our methods generate
clearer images.
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(a) Blurry input (b) IRCNN [14] (c) ADM UDM [4] (d) KerUNC [8]

(e) VEM [9] (f) DWDN [2] (g) SVMAP [3] (h) DRUNet [13]

(i) DSDNet (Light) (j) DSDNet (Heavy) (k) DSDNet (Full) (l) Ground truth

Fig. 7: Qualitative evaluation of 1% Gaussian noise on BSD100 [7]. Our models
generate sharper texture both in the red and green boxes than other methods.
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(a) Blurry input (b) IRCNN [14] (c) ADM UDM [4] (d) KerUNC [8]

(e) VEM [9] (f) DWDN [2] (g) SVMAP [3] (h) DRUNet [13]

(i) DSDNet (Light) (j) DSDNet (Heavy) (k) DSDNet (Full) (l) Ground truth

Fig. 8: Qualitative evaluation of 1% Gaussian noise on BSD100 [7]. Only the red
boxes of our (j) and (k) are out of artifacts. Besides, only the green boxes of
these two models keep the sharp details.
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(a) Blurry input (b) IRCNN [14] (c) ADM UDM [4] (d) KerUNC [8]

(e) VEM [9] (f) DWDN [2] (g) SVMAP [3] (h) DRUNet [13]

(i) DSDNet (Light) (j) DSDNet (Heavy) (k) DSDNet (Full) (l) Ground truth

Fig. 9: Qualitative evaluation of 3% Gaussian noise on BSD100 [7]. The contents
in (k) are clearer than other methods.
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(a) Blurry input (b) IRCNN [14] (c) ADM UDM [4] (d) KerUNC [8]

(e) VEM [9] (f) DWDN [2] (g) SVMAP [3] (h) DRUNet [13]

(i) DSDNet (Light) (j) DSDNet (Heavy) (k) DSDNet (Full) (l) Ground truth

Fig. 10: Qualitative evaluation of 5% Gaussian noise on BSD100 [7]. The texture
in (j) and (k) are sharper than other methods, while that of our light-weighted
model (i) is very close to state-of-the-art methods (g) and (h).
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(a) Blurry input (b) IRCNN [14] (c) ADM UDM [4] (d) KerUNC [8]

(e) VEM [9] (f) DWDN [2] (g) SVMAP [3] (h) DRUNet [13]

(i) DSDNet (Light) (j) DSDNet (Heavy) (k) DSDNet (Full) (l) Ground truth

Fig. 11: Qualitative evaluation on Manmade of Lai [5]. Only DWDN [2] (f)
and our methods reconstruct the texture in green boxes, while the red box of (f)
contains artifacts as other methods.
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(a) Blurry input (b) IRCNN [14] (c) ADM UDM [4] (d) KerUNC [8]

(e) VEM [9] (f) DWDN [2] (g) SVMAP [3] (h) DRUNet [13]

(i) DSDNet (Light) (j) DSDNet (Heavy) (k) DSDNet (Full) (l) Ground truth

Fig. 12: Qualitative evaluation on Natural of Lai [5]. The evaluated methods
do not restore the details well, as shown in (b)-(h). In contrast, our method
restores much clearer images with finer details.
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(a) Blurry input (b) IRCNN [14] (c) ADM UDM [4]

(d) KerUNC [8] (e) VEM [9] (f) DWDN [2]

(g) SVMAP [3] (h) DRUNet [13] (i) DSDNet (Full)

Fig. 13: Qualitative evaluation on a real case uses the kernel estimated by [10].
The evaluated methods do not restore the details well, as shown in (b)-(h). In
contrast, our method restore much clearer images with finer details.
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(a) Blurry input (b) IRCNN [14] (c) ADM UDM [4]

(d) KerUNC [8] (e) VEM [9] (f) DWDN [2]

(g) SVMAP [3] (h) DRUNet [13] (i) DSDNet (Full)

Fig. 14: Qualitative evaluation on a real case uses the kernel estimated by [10].
The evaluated methods mix the white texts with surrounding colors in (b) - (h).
In contrast, our method restores much sharper texts with less mixed color.
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6 Limitation

In Section 5.6 of the manuscript, we have pointed out that our method is less ef-
fective when the blurry images contain significant saturation. Because the linear
convolution model used in the degradation process does not hold for satura-
tion, methods based on such a degradation model will generate the results with
significant artifacts, as shown in Fig. 15(b).

As the pixels in the saturated regions usually have higher intensity values,
clipping these pixels and ignoring them in the deblurring process would help the
performance improvement (Fig. 15(c)). Since deblurring images with saturated
regions is an important task, future work will consider jointly handling saturated
areas and image deblurring in a principled way.

(a) Blurry input (b) Overflow without clipping (c) Clipped

Fig. 15: A failure example. Images containing dark and saturated pixels may
cause overflow, as shown in (b). Clipping these pixels and ignoring them in the
deblurring process generates a good result, as shown in (c).
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