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Abstract. In this supplementary material, we provide more details about
the optimization algorithm, network module design, and execute more
ablation experiments to illustrate the effectiveness of our method. Fur-
thermore, we compare with unsupervised blind super-resolution for blur
kernel estimation.

1 Details of Model Optimization

In this section, we provide a detailed derivation in Section 3.2 of the main text. As
we shown in the main text, the optimization problem for blind super-resolution
can be mathematically expressed as:

min
K,X

∥∥∥Y − (X ⊗K) ↓s
∥∥∥2

F
+ λ1ϕ1(K) + λ2ϕ2(X)

s.t. Kj ≥ 0,
∑
j

Kj = 1, ∀j,
(1)

where we aim to estimate a blur kernel K ∈ Rp×p and an HR image X ∈
RH×W from an observed LR image Y ∈ Rh×w; ϕ1(K) and ϕ2(X) represent the
regularization terms for delivering the prior knowledge of blur kernel and HR
image, respectively. λ1 and λ2 are trade-off regularization parameters. We also
introduce the non-negative and equality constraints for every element Kj of blur
kernel K to alleviate the non uniqueness of the solution.

As mentioned in Section 3.2 of the main text, we use the proximal gradient
algorithm [1] to solve the alternate optimization problem of X and K. The
details are provided as follows:
Updating blur kernel K: The blur kernel K can be updated by solving:

K(t) = argmin
K

Q1

(
K,K(t−1)

)
, (2)

* Corresponding author.
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whereK(t−1) denotes the updating result after the last iteration, andQ1(K,K(t−1))
is a quadratic approximation of the objective function Eq. (1) with respect to
K, mathematically expressed as:

Q1

(
K,K(t−1)

)
=f

(
K(t−1)

)
+

1

2δ1

∥∥∥K −K(t−1)
∥∥∥2

F

+
〈
K −K(t−1),∇f

(
K(t−1)

)〉
+ λ1ϕ1(K),

(3)

where f(K(t−1)) =
∥∥∥Y −

(
X(t−1) ⊗K(t−1)

)
↓s

∥∥∥2
F

and δ1 denotes the stepsize

parameter. Then Eq. (2) is equivalent to:

min
K

∥∥∥K−
(
K(t−1)−δ1∇f

(
K(t−1)

))∥∥∥2

F
+ λ1δ1ϕ1(K)

s.t. Kj ≥ 0,
∑
j

Kj = 1,∀j,
(4)

It’s solution can then be easily expressed in close-form as [4]:

K(t) = proxλ1δ1

(
K(t−1) − δ1∇f

(
K(t−1)

))
, (5)

where proxλ1δ1(·) is the proximal operator dependent on the regularization term

ϕ1(·) with respect to K; the specific form of ∇f(K(t−1)) is complicated. For
ease of calculation by transforming the convolutional operation in f(K(t−1))
into matrix multiplication, as shown in the main text, we have:

∇f
(
k(t−1)

)
=
(
DsUf

(
X(t−1)

))T

vec
(
Y−

(
X(t−1)⊗K(t−1)

)
↓s
)
, (6)

where Uf

(
X(t−1)

)
∈ RHW×p2

are the unfolded result of X(t−1); Ds denotes
the downsampling operator which is corresponding to the operator ↓s, and
achieves the transformation from the size HW to the size hw. Thus, the re-
sult DsUf

(
X(t−1)

)
; ∇f

(
k(t−1)

)
∈ Rp2×1; ∇f

(
K(t−1)

)
= vec−1

(
∇f(k(t−1))

)
;

vec−1(·) is the reverse vectorization;

Implementation of DsUf (·): With Pytorch 4 framework, we can directly per-
form “torch.nn.function.unfold” with stride = s on X(t−1) ∈ RH×W to get(
DsUf (X

(t−1))
)T ∈ Rp2×hw, and execute “torch.permute” to getDsUf (X

(t−1)) ∈
Rhw×p2

.

Updating HR image X: Similarly, the quadratic approximation of the prob-
lem in Eq. (1) with respect to X is:

Q2

(
X,X(t−1)

)
=h

(
X(t−1)

)
+

1

2δ2

∥∥∥X −X(t−1)
∥∥∥2

F

+
〈
X −X(t−1),∇h

(
X(t−1)

)〉
+ λ2ϕ2(X),

(7)

4 https://pytorch.org/
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Fig. 1. Illustration of the gradient adjuster. The solid line represents the gradient
adjustment process.
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Fig. 2. (1) The exploited ResNet for the proximal network proxNet
θ
(t)
k

(·). (2) The

exploited ResNet for the proximal network proxNet
θ
(t)
x

(·)
.

where h(X(t−1)) =
∥∥∥Y −

(
X(t−1) ⊗K(t)

)
↓s

∥∥∥2
F
; ∇h

(
X(t−1)

)
= K(t) ⊗T

s(
Y −

(
X(t−1) ⊗K(t)

)
↓s
)
; δ2 denotes the stepsize parameter. Then the equiva-

lent optimization problem is:

min
X

∥∥∥X−
(
X(t−1)−δ2∇h

(
X(t−1)

))∥∥∥2

F
+λ2δ2ϕ2(X), (8)

Similarly, we can easily deduce the updating rule for X as:

X(t) = proxλ2δ2

(
X(t−1)−δ2K

(t)⊗T
s

(
Y −(X(t−1)⊗K(t)) ↓s

))
, (9)

where proxλ2δ2(·) is the proximal operator dependent on the regularization term
ϕ2(·) with respect to X.

2 Details of Network Module Design

In this section, we provide more details of network design, including the gradient
adjuster, proxNet

θ
(t)
k

(·) and proxNet
θ
(t)
x
(·).

Gradient adjuster. As stated in Section 4.1 of the main text, we adopt an

adjuster to the gradient G
(t)
x , which alleviate the unevenness issue. As shown in
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Table 1. Average PSNR/SSIM of adopting different strategies for X-net on synthesized
testing sets. KXNet∗ presents without gradient adjuster and concatenating strategy.

Method Noise
Urban100 [7] BSD100 [10] Set14 [14] Set5 [3]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

KXNet∗
0

27.55 0.8425 29.71 0.8293 30.45 0.8532 33.63 0.9213
KXNet(ours) 28.33 0.8627 30.21 0.8456 31.14 0.8672 34.59 0.9315

KXNet∗
5

26.51 0.7957 28.21 0.7580 29.01 0.7951 31.82 0.8829
KXNet(ours) 26.88 0.8056 28.33 0.7615 29.22 0.7993 32.07 0.8864

KXNet∗
15

25.25 0.7433 26.82 0.6946 27.53 0.7402 29.84 0.8422
KXNet(ours) 25.45 0.7500 26.87 0.6959 27.59 0.7422 29.93 0.8449

Fig. 1, the residual image E
(t)
x are deconvolved with blur kernel K(t) to obtain

the gradient G
(t)
x . We can clearly find that due to the “uneven overlap” phe-

nomenon with transposed convolution, the obtained gradient G
(t)
x is corrupted

with unexpected grid-like artifacts. These kinds of artifacts can be detrimental
to image restoration for it is neither smooth nor natural. To alleviate the un-
evenness issue, we introduce the K(t) ⊗T

s 1 to calculate the degree of uneven

overlap and element-wisely divide G
(t)
x with K(t)⊗T

s 1 to get an adjusted gradi-

ent, Ĝ
(t)
x . As illustrated in Fig. 1, Ĝ

(t)
x has more precise textures and edges than

G
(t)
x , which will improve the recovery performance of X-net.

Proximal Network Architecture. As stated in the main text, the proxi-
mal network proxNet

θ
(t)
k

(·) and proxNet
θ
(t)
x
(·) (t = 0, 1, · · · , T ) are two shallow

ResNets. Fig. 2 shows the architectural details of proxNet
θ
(t)
k

(·) and proxNet
θ
(t)
x
(·),

respectively. For each Resblock in each stage in proxNet
θ
(t)
k

(·), we simply adopt

the same structure. proxNet
θ
(t)
x
(·) also uses the same strategy. It is worth noting

that we also adopted the residual in residual (RIR) structure [16] here, which is
very effective for single image super-resolution problems.

3 Ablation studies

In this section, we will provide the ablation studies about the gradient ad-

juster and concatenating X(t−1) and Ĝ
(t)
x as the input of the proximal network

proxNet
θ
(t)
x
(·). In this part, the setting of the experiment is the same as setting

2 for scale factor 2 in the main text. We adopt the PSNR and SSIM computed
on Y channel in the YCbCr space for quantitative analysis. As shown in Ta-

ble 1, if we do not perform gradient adjuster and concatenate X(t−1) and Ĝ
(t)
x

as the input of the proximal network proxNet
θ
(t)
x
(·), then the performance will

be greatly reduced. The above experiments verify the effectiveness of gradient
adjuster and concatenation strategy.
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Table 2. Compared to USRNet on Set14.

Method (x2) K-Net+USRNet [15] KXNet

PSNR / SSIM 29.37 / 0.8250 29.71 / 0.8354
Speed (seconds) 1.38 0.47

4 Compare with the Non-Blind Super-Resolution
Unfolding Method.

Here we mainly compare with the SOTA of the non-blind super-resolution un-
folding method, USRNet[15]. Firstly, our method targets the blind super-resolution
problem, i.e., the blur kernel is unknown, while USRNet targets the non-blind
super-resolution problem. Therefore, USRNet has no function of estimating the
blur kernel and handling the blur kernel unknown cases. Secondly, compared with
USRNet, the X-Net we constructed has the following advantages: 1) Simpler
operators. When updating X(t), USRNet involves multiple Fourier transforms
and division operations, which will increase the computational complexity, es-
pecially during the gradient backpropagation process. Comparatively, KXNet
only contains convolutions and ReLu operations, which are evidently simpler
to calculate. Thus, the inference speed of KXNet is much faster, as illustrated
in Table 2. 2) More stable results. KXNet is built according to a proximal
gradient descent algorithm, and the updating of X and K are both performed
by gradient descent and ResNet, which adjusts X and K by adding a relatively
small residue. This updating manner is very stable, ensuring that X and K
don’t change very much through network stages. In comparison, the manner
for updating X in USRNet could always be hardly guaranteed to be stable, for
the Fourier transforms and inverse Fourier transforms tend to make the updat-
ing results more unpredictable. To verify this point, we replace our X-Net with
USRNet, i.e., combining K-Net with USRNet (denoted K-Net+USRNet), and
conduct experiments under the same setting with KXNet. The experimental re-
sults are shown in the following Table 2. We controlled the number of stages of
KXNet so that the parameters of the two methods are almost the same, and the
advantage of KXNet can be evidently observed.

Table 3. Performance comparison between SeaNet/ENLCA and KXNet on Set14.

Method (x2) SeaNet [5] ENLCA [13] KXNet
PSNR 29.50 18.35 31.14
SSIM 0.8262 0.5077 0.8672

5 Compare with other Super-Resolution Method.

We further compare with the latest super-resolution algorithms, SeaNet [5] and
ENLCA [13]. Thus, we conduct experiments under the same setting with KXNet,
and the final results are shown in Table 3.
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Table 4. Average PSNR/SSIM of all the comparing methods (Setting 2).

Method Scale
Urban100 [7] BSD100 [10] Set14 [14] Set5 [3] Noise

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Level

Bicubic

x2

23.00 0.6656 25.85 0.6769 25.74 0.7085 27.68 0.8047

0

RCAN [16] 23.22 0.6791 26.03 0.6896 25.92 0.7217 27.85 0.8095
IKC [6] 27.46 0.8401 29.85 0.8390 30.69 0.8614 33.99 0.9229
DASR [12] 26.65 0.8106 28.84 0.7965 29.44 0.8224 32.50 0.8961
DAN [9] 27.93 0.8497 30.09 0.8410 31.03 0.8647 34.40 0.9291
KXNet(ours) 28.33 0.8627 30.21 0.8456 31.14 0.8672 34.59 0.9315
Bicubic

x3

21.80 0.6084 24.68 0.6254 24.28 0.6546 25.78 0.7555
RCAN [16] 21.38 0.6042 24.47 0.6299 24.07 0.6606 25.63 0.7572
IKC [6] 25.36 0.7626 27.56 0.7475 28.19 0.7805 31.60 0.8853
DASR [12] 25.20 0.7575 27.39 0.7379 27.96 0.7727 30.91 0.8723
DAN [9] 25.82 0.7855 27.88 0.7603 28.69 0.7969 31.70 0.8940
KXNet(ours) 26.37 0.8035 28.15 0.7672 29.04 0.8036 32.53 0.9034
Bicubic

x4

20.88 0.5602 23.75 0.5827 23.17 0.6082 24.35 0.7086
RCAN [16] 19.84 0.5307 23.10 0.5729 22.38 0.5967 23.72 0.6973
IKC [6] 24.33 0.7241 26.49 0.6968 27.04 0.7398 29.60 0.8503
DASR [12] 24.20 0.7150 26.43 0.6903 26.89 0.7306 29.53 0.8455
DAN [9] 24.91 0.7491 26.92 0.7168 27.69 0.7600 30.53 0.8746
KXNet(ours) 25.30 0.7647 27.08 0.7221 27.98 0.7659 30.99 0.8815
Bicubic

x2

22.89 0.6401 25.65 0.6498 25.55 0.6826 27.39 0.7738

5

RCAN [16] 22.88 0.5986 25.43 0.6092 25.34 0.6460 26.89 0.7333
IKC [6] 25.72 0.7678 27.76 0.7456 28.28 0.7793 31.23 0.8718
DASR [12] 25.89 0.7739 27.75 0.7396 28.41 0.7767 31.03 0.8680
DAN [9] 26.64 0.7964 28.24 0.7571 29.14 0.7954 32.01 0.8843
KXNet(ours) 26.88 0.8056 28.33 0.7615 29.22 0.7993 32.07 0.8864
Bicubic

x3

21.72 0.5889 24.52 0.6045 24.15 0.6349 25.59 0.7316
RCAN [16] 21.30 0.5538 24.19 0.5776 23.80 0.6099 25.23 0.7128
IKC [6] 25.01 0.7405 26.95 0.7070 27.59 0.7481 30.53 0.8586
DASR [12] 24.73 0.7300 26.75 0.6957 27.32 0.7379 29.84 0.8437
DAN [9] 25.13 0.7472 27.01 0.7090 27.72 0.7513 30.36 0.8578
KXNet(ours) 25.49 0.7614 27.13 0.7140 27.92 0.7572 30.71 0.8637
Bicubic

x4

20.82 0.5461 23.63 0.5676 23.07 0.5937 24.22 0.6911
RCAN [16] 19.92 0.4996 22.99 0.5365 22.31 0.5597 23.48 0.6633
IKC [6] 24.02 0.7027 26.03 0.6664 26.57 0.7129 28.90 0.8275
DASR [12] 23.92 0.6982 26.01 0.6636 26.46 0.7068 28.69 0.8211
DAN [9] 24.33 0.7167 26.20 0.6752 26.86 0.7219 29.30 0.8404
KXNet(ours) 24.59 0.7285 26.28 0.6777 27.01 0.7262 29.55 0.8450
Bicubic

x2

22.19 0.5159 24.44 0.5150 24.38 0.5497 25.72 0.6241

15

RCAN [16] 21.28 0.3884 22.98 0.3822 22.96 0.4155 23.76 0.4706
IKC [6] 24.69 0.7208 26.49 0.6828 26.93 0.7244 29.21 0.8260
DASR [12] 24.84 0.7273 26.63 0.6841 27.22 0.7283 29.44 0.8322
DAN [9] 25.32 0.7447 26.84 0.6932 27.56 0.7392 29.91 0.8430
KXNet(ours) 25.45 0.7500 26.87 0.6959 27.59 0.7422 29.93 0.8449
Bicubic

x3

21.18 0.4891 23.55 0.4961 23.28 0.5289 24.42 0.6119
RCAN [16] 20.22 0.3693 22.20 0.3726 21.99 0.4053 22.85 0.4745
IKC [6] 24.21 0.7019 25.93 0.6564 26.42 0.7018 28.61 0.8135
DASR [12] 23.93 0.6890 25.82 0.6484 26.27 0.6940 28.27 0.8047
DAN [9] 24.17 0.7013 25.93 0.6551 26.46 0.7014 28.52 0.8130
KXNet(ours) 24.42 0.7135 25.99 0.6585 26.56 0.7063 28.64 0.8178
Bicubic

x4

20.38 0.4690 22.83 0.4841 22.39 0.5120 23.33 0.5977
RCAN [16] 19.23 0.3515 21.47 0.3686 21.05 0.3960 21.77 0.4689
IKC [6] 23.35 0.6665 25.21 0.6238 25.58 0.6712 27.45 0.7867
DASR [12] 23.26 0.6620 25.20 0.6223 25.55 0.6683 27.32 0.7842
DAN [9] 23.48 0.6742 25.25 0.6283 25.72 0.6760 27.55 0.7938
KXNet(ours) 23.67 0.6844 25.30 0.6296 25.78 0.6792 27.66 0.7977

6 More Experimental Results

In this section, we provide more numerical results of KXNet on Setting2 in the
main text, as shown in Table 4.
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GT KernelGAN+ZZSR DIP-FKP DIP-FKP+USRNet KXNet (ours)

PSNR/SSIM 27.89/0.9096 28.75/0.8840 25.42/0.9007 37.89/0.9760

PSNR/SSIM 23.59/0.7458 24.86/0.7338 25.39/0.8480 31.88/0.9345

Fig. 3. Blur kernel estimation and performance comparison on img 11 and img 14 in
Set14 [14]. The scale factor is 2 and the noise level is 0. The blur kernel estimated by
DIP-FKP shifts to the upper left due to the underlying assumption.

Table 5. Quantitative comparison with the unsupervised SOTA methods.

Noise
Method (x2)

Set14 [14]
Level PSNR SSIM

0

KernelGAN [2] + ZSSR [11] 24.88 0.7532
DIP-FKP [8] 25.81 0.7210
DIP-FKP [8] + USRNet [15] 22.58 0.7317
KXNet(ours) 32.10 0.8979

7 Blur Kernel Estimation

In this section, we demonstrate more experimental results about blur kernel esti-
mation. Currently, there are some unsupervised blind super-resolution methods
that have achieved remarkable performance in estimating blur kernel, such as
KernelGAN [2] and DIP-FKP [8]. We can combine the estimated blur kernels
by these methods and the competing non-blind SR methods, such as ZZSR and
USRNet, to accomplish the blind SR task. As shown in Fig. 3 and Table 5, due
to the single image learning strategy, these unsupervised methods cannot learn
rich image priors underlying data and the SR performance is inferior. Besides, by
comparing DIP-FKP and DIP-FKP+USRNet, we can easily find that the inac-
curacy of the estimated blur kernel by DIP-FKP tends to adversely affect the SR
performance of the non-blind SR method–USRNet. In contrast, under different
blur kernel degradation settings, the proposed method can consistently achieve
better kernel estimation and obtain better SR performance, which significantly
outperforms the KernelGAN+ZSSR and DIP-FKP+USRNet. This finely sub-
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stantiates the superiority of our unfolding network which fully and reasonably
embeds the inherent relationship between blur kernel and HR image. It is the
joint estimation of blur kernel and HR image which guides the network to learn
in the right direction.
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