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To make our RealFlow self-contained, we provide more details in this doc-
ument including: 1) detailed information of the datasets 2) experiments of the
dataset quantity. 3) results of splatting and hole filling. 4) the efficiency of gen-
eration. 5) limitation of our method. 6) more qualitative comparison results and
visualization of RealFlow samples from various videos.

1 Datasets Detail

In this section, we describe the detailed information of relevant datasets and
the generated datasets of our RealFlow. For convenience, we summarize our
generated datasets in Table.1.
Flying Chairs [4] and Flying Things [17]: These two synthetic datasets are
generated by randomly moving foreground objects on top of a background image.
State-of-the-art supervised networks usually train on Chairs and Things.
Virtual KITTI [5]: Virtual KITTI is a synthetic dataset, which contains 50
high-resolution videos generated from 5 different virtual urban environments
under different weather conditions. These environments are created by the Unity
engine and the flow labels are automatically generated.
DAVIS [3]: DVAIS dataset consists of high-quality video sequences under vari-
ous kinds of scenes, which have been widely used for video object segmentation.
It only provides densely annotated segmentation labels but not optical flow la-
bels. We use 10,581 images from DAVIS challenge 2019 to generate RF-DAVIS.
ALOV [13] and BDD100K [18]: ALOV dataset is a diverse real-world video
sequence for tracking, ranging from easy to difficult, which covers as diverse
circumstances as possible. This dataset consists of 315 video sequences and we
capture 75,581 image pairs from them. BDD100K dataset is a large-scale diverse
driving video database. It consists of 100,000 videos covering different weather
conditions and urban scenes, ranging from daytime to nighttime. We sampled
part of the videos and capture 86,128 images pairs. There is no flow label for
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Table 1: An overview of our created datasets.
Dataset Quantity Source Data

RF-Ktrain 4,000 KITTI-multiview(training)

RF-Ktest 3,989 KITTI-multiview(testing)

RF-Sintel 1,041 Sintel-Clean(training)

RF-DAVIS 10,581 DAVIS-2019 video sequence

RF-AB 161,709 ALOV and BDD100K video sequence

Table 2: Analyze the impact of the dataset quantity. We use the datasets with
different amounts of training pairs to train RAFT with the same implementation.
The learned models are evaluated on KITTI 2015 train set and Sintel Final train
set, where the end-point error (epe) is used as the evaluation metric.

Dataset Quantity KITTI15 Sintel F.

dCOCO[1] 100k 3.81 3.90
RF-AB 10k 3.83 3.51
RF-AB 40k 3.65 3.35
RF-AB 80k 3.60 3.32
RF-AB 160k 3.48 3.28

these image pairs, so we use RealFlow to create a large diverse real-world dataset
with flow label, named RF-AB.
KITTI [6,11]: KITTI2012 and KITTI2015 dataset takes advantage of au-
tonomous driving platform to develop challenging benchmarks for the tasks of
optical flow estimation. They provide around 200 training pairs and 200 test
pairs. There are multi-view extensions (4,000 training and 3,989 testing) datasets
with no ground truth. We use the multi-view extension videos(training and test-
ing) of KITTI 2015 to generate new datasets RF-Ktrain and RF-Ktest.
Sintel [2]: Sintel is a synthetic flow benchmark derived from the open-source
3D animated short film, which contains 1,041 training pairs and 564 test pairs.
’Clean’ and ’Final’ rendering sets are provided. We use the images from the
training set to generate our RF-Sintel.

2 Dataset Quantity

In this section, we analyze the impact of different amounts of datasets for network
training. Specifically, we reduce the amount of our RF-AB dataset to half, one
quarter, and one-sixteenth, respectively. Then we train RAFT from scratch on
these datasets and evaluate the learned models on the train sets of KITTI 2015
and Sintel Final. As shown in Table. 2, a better supervised network can be
obtained by training on a larger dataset, which demonstrates that the quantity
of labeled pairs is a crucial characteristic of optical flow dataset. Moreover, we
also compare our datasets with dCOCO [1]. We can notice that training on
our RF-AB dataset with only 10, 000 pairs can achieve a better result than on
dCOCO, which contains 100, 000 training pairs. This phenomenon further proves
that the realism of motion is a crucial factor for dataset generation.
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Fig. 1: A toy example of how the hole and occlusion problems occur in the
forward warping process. The reference image (left) is divided into two regions:
the foreground object (the orange ellipse) and the background (the blue plane).
The foreground object is moving to the right. When applying forward warping,
the hole problem occurs in the gray region because no pixel is assigned to this
area. The occlusion problem occurs in the green region because multiple pixels
are assigned to this area.

3 Splatting and Hole Filling

In our Realistic Image Pair Rendering (RIPR) method, we first forward-warp the
reference image to the target view and then use splatting and our Bi-directional
Hole Filling (BHF) to address the occlusion and hole problems. Here, we first
present how the occlusion and hole problems occur in the forward warping pro-
cess. Then, we show some visual results to analyze the details of the splatting
and hole filling methods.

Fig. 1 is a toy example to illustrate how the hole and occlusion problems
occur. We divide the reference image into the foreground region (the orange el-
lipse) and background region (the blue plane), where the foreground region is
moving to the right in the next view and the background remains stationary.
When the reference image is forward-warped to the next view, the foreground
pixels and some background pixels are assigned to the same place, thus the oc-
clusion problem occurs as the green region highlights. Besides, the hole problem
occurs when no pixel is assigned to some areas as indicated by the gray region
in Fig. 1.

For splatting, as mentioned in our main text, max splatting renders more re-
alistic images than softmax splatting. However, we notice that softmax splatting
can produce better dataset than max splatting in our ablation study. Here, we
explain why this happens by an example from Sintel dataset that is shown in
Fig. 2. We use softmax splatting and max splatting to warp the reference image
to the target view based on ground truth optical flow and different depth maps.
In Fig. 2, the first line shows the original target image ‘Real Image2’ and the
generated target image ‘Image2 Max-GTD’ by using max splatting based on the
ground truth depth. The second line shows the estimated depth by DPT [12] and
the ground truth depth. The third line shows the softmax splatting result and
max splatting result based on the estimated depth. As can be seen from Fig. 2,
when the depth map is correct (using ground truth depth or correct depth esti-
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Fig. 2: An example to show softmax splatting and max splatting with ground
truth depth and the estimated depth by DPT [12]. Zoom-in patches are shown
in the right side. From top to bottom: the original image2 and the generated
image2 by max splatting with ground truth depth, the estimated depth and
ground truth depth, the softmax splatting result and max splatting result based
on the estimated depth. We can notice that when the depth is correct, using
max splatting can obtain realistic rendering result, as shown by the green boxes.
However, when depth is incorrect, using max splatting may cause harmful tearing
of the texture. This problem can be alleviated by using softmax splatting, as
shown by the red boxes.

mation), max splatting method can generate a realistic result, which is almost
the same as the original target image. However, as highlighted by the red box,
the incorrect depth may cause harmful tearing of the texture in the max splat-
ting result, which may reduce the quality of the dataset generated by the max
splatting method. This problem can be alleviated by using softmax splatting
method, which can obtain a translucent fusion result in these occlusion areas so
that the information of the foreground objects can be partially provided even
with incorrect depth estimation. This is the reason why sofmax splatting can
produce better results than the max version, though max splatting can provide
image pairs look more realistic.

For hole filling, in ablation study, we have validated that our BHF outper-
forms the deep neural inpainting method RFR [7]. Fig. 3 presents some exam-
ples for qualitative comparison. For the fair comparison, we use the RFR [7]
pre-trained on the large-scale outdoor dataset PARIS, and fine-tuned on KITTI
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Fig. 3: Qualitative comparison of different methods for hole filling. Top to bot-
tom: the reference images, the ‘new image 2’ generated by splatting, the hole
masks, hole filling results by RFR [7], and hole filling results by our BHF method.

dataset with 100k steps to inpaint these holes. As can be seen, inpainting method
RFR may introduce artifacts in these hole regions, while our BHF method can
produce realistic image for dataset construction.

4 Efficiency of RealFlow

The efficiency is an essential indicator of a dataset generation method. Tradi-
tional manually annotation method [8] may cost 20 ∼ 30 minutes per image
pair, especially for challenging scenes. AutoFlow[14] takes about 7 days to finish
8 searching iterations using 48 NVIDIA P100 GPUs for the rendering hyperpa-
rameters searching and then use the learned hyperparamters to render image
pairs. In contrast, our method can automatically generate a large amount of
training pairs with high efficiency. During the E-step, the running time of our
RealFlow is 0.53s for generating a training pair with a resolution of 512 × 960
using only 1 NVIDIA 2080Ti GPU. The time consumption of the M-step in our
RealFlow depends on the training of the deep neural network. In this work, we
train RAFT [15] for 120k iterations with a batch size of 5 on 1 NVIDIA 2080Ti
GPU. Using more computational resources may reduce the time consumption of
our RealFlow.

5 Limitation

In Fig. 4, as illustrated by the red circle, there is discontinuous illumination
artifact in the generated new image 2. This is because that the brightness of the
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Fig. 4: Limitation of our RealFlow. As pointed by the red circle, there is discon-
tinuous illumination artifact in the generated new image 2. This is because that
the brightness of the car changes greatly in the original image pair.

car changes greatly in the original image pair. During the hole filling process
of our RealFlow, object regions with different brightness are used to fill the
occlusion regions.

6 Qualitative Results

6.1 Comparison with Dataset Generation Methods

In Fig. 5, we show example training pairs of our RealFlow, Depthstillation [1],
AutoFlow [14] and FlyingThings [17]. As can be seen, the training pair of Depth-
stillation contains a large region of artifacts that reduce the realism of the image.
AutoFlow and FlyingThings samples are generated by moving the foreground
image patches or objects on the background image, thus the scene objects and
their motions are synthesized and can not match the real-world scene. Compared
with these methods, the motion and image content of our RealFlow is realistic
because the training pair is generated from real-world videos.

The statistics of motion magnitude for different datasets have been shown
in Fig. 6. Our RF-AB dataset exhibits an exponential falloff like Sintel and
Flyingchairs but is more smooth. The motion of KITTI mainly concentrates in
small range which forms a steep polyline. AutoFlow has few small motions and
focuses on middle-range motions. The statistics of motion magnitude for RF-
AB is similar to the KITTI, when compared with flyingchairs and Autoflow,
which maybe one of the factors that lead to the effectiveness when evaluating
on KITTI.

We also provide qualitative comparison of our RealFlow with previous dataset
generation method Depthstillation [1] in Fig. 7. Specifically, Depthstillation
uses DAVIS and KITTI multi-view test videos to generate optical flow training



RealFlow 7

a) RealFlow b) Depthstillation c) AutoFlow d) FlyingThings

Fig. 5: Example training pairs of our RealFlow and other dataset generation
methods, such as Depthstillation [1], AutoFlow [14] and FlyingThings [17].

dataset dDAVIS and dKITTI. For fair comparison, we also use the same source
videos to generate RF-DAVIS and RF-Ktest datasets. Then we train RAFT on
these datasets with the same hyperparameters and do evaluation on KITTI 2015
train set. The error map of each sample is also visualized with the EPE error
depicted in the top-right corner. As can be seen from Fig. 7, models trained
on our RF-DAVIS and RF-Ktest datasets can produce better optical flow esti-
mation results than trained on dDAVIS and dKITTI, which demonstrates the
effectiveness of our dataset generation method RealFlow.

6.2 Comparison with Unsupervised Methods

There is a set of unsupervised methods that can learn deep neural networks using
only video sequences without optical flow labels. We also compare our RealFlow
with state-of-the-art unsupervised methods. We first generate an optical flow
dataset RF-Ktrain using KITTI multi-view train set, which is also used as the
training set of the unsupervised methods. Then we train RAFT on our RF-Ktrain
and do evaluation on KITTI 2015 train set. We show qualitative comparison
result in Fig. 8, where ‘C+T’ is the baseline model trained on synthetic datasets
FlyingChairs and FlyingThings, UPFlow [9] is the state-of-the-art unsupervised
method that trained on the same source videos mentioned above. The End-
Point-Error (EPE) is used as the evaluation metric and the error maps are also
visualized, where correct predictions are depicted in blue and wrong ones in red.
As can be seen, optical estimation network trained on our generated dataset can
produce better results than unsupervised methods.



8 Y. Han et al.

Fig. 6: Histogram of motion magnitude for the generated dataset RFAB and
existing datasets.

6.3 Comparison with Supervised Methods

The original RAFT [15] is first pre-trained on synthetic datasets FlyingChairs
and FlyingThings and then fine-tuned on KITTI15-training dataset. AutoFlow [14]
pre-train RAFT on their proposed AutoFlow dataset and follow the same proce-
dure to further fine-tune the model. We also pre-train the RAFT network using
our RF-train dataset generated by RealFlow and then fine-tune on KITTI15-
training dataset. We compare our results with them on the public online bench-
mark KITTI 2015 testing. The percentage of erroneous pixels (F1) is used as
the evaluation metric. In Fig. 9, we show some qualitative comparison results of
our method with AutoFlow and the original RAFT. As can be seen, our method
achieves better results than AutoFlow and RAFT.

6.4 Visualization of RealFlow samples

Our RealFlow can automatically generate training pairs from videos without
human involvement. Thus, huge amount of videos can be used to generate optical
flow training pairs which help the supervised networks generalize to various
scenes.

Fig. 10 shows some samples generated from ALOV [13] dataset. ALOV
dataset contains diverse real-world video sequences that cover various circum-
stances. Fig. 11 shows samples generated from BDD100K [18] dataset. BDD100K
is a large-scale diverse driving video database that covers diverse urban scenes.
The samples generated from ALOV and BDD100K are used to construct our
dataset RF-AB.

Fig. 12 shows some samples generated from DAVIS [3] challenge 2019. DAVIS
consists of high-quality video sequences under various kinds of scenes. The sam-
ples generated from DAVIS are used to construct our dataset RF-DAVIS.
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Besides, in order to demonstrate the efficiency and versatility of our method,
we also use Vimeo-90k [16] dataset to generate some samples which is shown
in Fig. 13. Vimeo-90k Dataset is a large-scale, high-quality video dataset for
video enhancement such as temporal frame-interpolation, denoising, and super-
resolution, which contains many close-ups. These samples may be helpful for
some specific tasks.
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(a) Qualitative comparison of RAFT trained on our RF-DAVIS dataset with that trained
on dDAVIS [1] dataset.

(b) Qualitative comparison of RAFT trained our RF-Ktest dataset with that trained on
dKITTI [1] dataset.

Fig. 7: Qualitative comparison of our RealFlow with previous dataset genera-
tion method Depthstillation [1]. Depthstillation generated optical flow dataset
dDAVIS and dKITTI from DAVIS and KITTI multiview test. We also use the
DAVIS and KITTI multi-view test videos to generate our RF-DAVIS and RF-
Ktest datasets. We train the same model RAFT on these datasets and evaluate
on KITTI 2015 train set. Error maps are also visualized, where correct pixels
are displayed in blue and wrong ones in red.
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Fig. 8: Qualitative comparison of our RealFlow with unsupervised methods. We
first generate RF-Ktrain dataset using the same training videos as the unsuper-
vised method UPFlow [9]. Then we train RAFT on our RF-Ktrain to obtain the
optical flow predictions for comparison with the unsupervised method UPFlow
and the baseline method, where RAFT is trained on C+T (synthetic dataset
FlyingChairs and FlyingThings). Error maps are visualized, where correct pre-
dictions are displayed in blue and wrong ones in red. The End-Point-Error (epe)
is used as the evaluation metric, which is also depicted in the top-right side of
each sample.
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Fig. 9: Qualitative comparison of our method with AutoFlow and RAFT on
KITTI 2015 online benchmark. The percentage of erroneous pixels (F1) is used
as the evaluation metric. Error maps are visualized by KITTI 2015 website,
where correct pixels are displayed in blue and wrong ones in red.
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ALOV

Fig. 10: Samples from RF-AB. These samples are generated from ALOV [13]
which is a large-scale real-world video dataset that covers various circumstances.
First/fourth row: image 1; second/fifth row: generated new image 2; third/sixth
row: visualized optical flow. Note that, these flow maps are the ground truth of
our generated pairs.
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BDD100K

Fig. 11: Samples from RF-AB. These samples are generated from BDD100K [18]
which is a large-scale diverse driving video database covering various urban
scenes. First/fourth row: image 1; second/fifth row: generated new image 2;
third/sixth row: visualized optical flow. Note that, these flow maps are the
ground truth of our generated pairs.
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DAIVS19

Fig. 12: Samples from RF-DAVIS. These samples are generated from DAVIS
challenge 2019 [3] which consists of high-quality video sequences under various
kinds of scenes. First/fourth row: image 1; second/fifth row: generated new image
2; third/sixth row: visualized optical flow. Note that, these flow maps are the
ground truth of our generated pairs.
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vimeo90k

Fig. 13: Vimeo-90k Dataset [16] is a large-scale, high-quality video dataset col-
lected for video enhancement tasks such as temporal frame-interpolation, denois-
ing and super-resolution. We also generated some training pairs from Vimeo-90k
which may be helpful for some specific scenes. First/fourth row: image 1; sec-
ond/fifth row: generated new image 2; third/sixth row: visualized optical flow.
Note that, these flow maps are the ground truth of our generated pairs.
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