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1 Overview

In this supplementary material, we first introduce more details of our D2CRealSR
dataset in Sec. 2, including the collection and processing method. In Sec. 3, we
discuss more about simulated SISR and real-world SISR. Then, in Sec. 4, we
demonstrate more experimental results and details. Finally, we show more visual
comparison results and divergence results in Sec. 5, including the results on the
RealSR and D2CR RealSR. datasets.

2 D2CRealSR Dataset

Existing real-world SISR datasets generally include images pairs on x2, x3 and
x4 scaling factors, such as RealSR dataset [2] and DRealSR dataset [13]. Our
proposed D2CRealSR, dataset have images pairs on x8 scaling factor, which larger
than the existing real-world datasets. The ill-posed problem is more obvious on
D2CRealSR dataset.

Images pairs in our dataset are taken by zooming Sony a-7. The number
of training pairs in our dataset is 100, and testing set has 15 images pairs
selected randomly. The D2CRealSR provides, to the best of our knowledge, the
first general purpose benchmark on x8 scaling factor for real-world SISR. It is
difficult to obtain images pairs with good alignment effects in natural scenes.
These difficulties in the alignment process include depth-of-field misalignment,
noticeable perspective misalignment, lens distortion misalignment and resolution
alignment ambiguity [15]. Therefore, using the DSLR camera to directly acquire
natural scene images pairs generally cannot be well aligned. We have found
misalignment in DRealSR dataset, mostly due to depth-of-field misalignment.
To solve these misalignment problems, we collect some high-resolution images,
firstly. These images are mostly taken by DSLR from existing datasets or our
own shooting dataset. Different from City100 [3], which only have city scenes, we
have selected the images with different scenes including indoor and outdoor. It
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contains a variety of target objects with rich texture. Then, we print these scenes
on high-quality postcards just like City100, and we get images pairs by taking
photos of postcards. For each scaling factors, we measured a safety distance under
a controlled environment in professional laboratory such that the textures and
reflections of postcards have no effect on the captured data. These postcards are
on a fixed plane, which can reduce the influence of depth-of-field misalignment.
It also weakens noticeable perspective misalignment. Further, we blur the HR
images of pairs in during calculating matrix M in SIFT algorithm and apply
the M on the source HR images to align source HR images with LR images.
In this way, it can weaken the influence of resolution alignment ambiguity. We
use multiple iterative alignment methods to ensure alignment results. Cropping
the center area after each alignment can reduce misalignment caused by lens
distortion. Several examples of our D2CRealSR dataset are shown in Fig. 1, and
it will be made publicly available later.

3 Simulated SISR and Real-World SISR

We focus primarily on real-world SR for two reasons. Firstly, more works have
focused on real-world SR because the great gap between simulated and real-world
degradation hinders practical SR applications [2,13]. Secondly, as shown in Fig. 2,
real-world degradation loses more information than bicubic compared with the
HR, and ill-posed problem becomes more apparent in real-world datasets. The
motivation of our approach is also to alleviate the ill-posed problem. Therefore, the
real-world datasets can better reflect the effectiveness of our method. Nevertheless,
as shown in Table 1, we still achieve good performance on bicubic benchmarks.

4 More Experimental Results and Details

4.1 Detalils in Divergence Loss

The traditional SR methods cannot be further optimized due to the ill-posed
nature and it always exists a minimum distance between Igr and Iygr. In our
experiments, too large margin cause performance degradation. Therefore, in
Fig. 3, we count the cumulative histogram of the average L2 distance based on
pre-trained model with only L2 loss. And we set the margin within a suitable
range. Theoretically, as the convergence of the network progresses, the « in the
divergence loss should be reduced accordingly. Otherwise the loss of divergence
can affect the impact of content consistency loss leading to degradation of results,
as shown in Table 2. Therefore, in our experiments, we will decay the weight of
the divergence loss after the set training step. On the other hand, the divergence
loss mainly helps to maintain the stability of the divergence process, so if the
divergence loss is completely removed it may also lead to degradation of the
performance due to incomplete divergence or unstable divergence stage in some
situations.
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(a) City scenes

(b) Natural scenes

(¢) Indoor scenes

Fig. 1: Examples of D2CRealSR dataset.
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(;1) HR Ground Truth  (b) BlCllblC Downsamphng (c) Real-world Degradation
PSNR (x4) 24.01 dB (x4) 23.09 dB

Fig. 2: Comparison of bicubic degradation and real-world degradation (x4). Real-
world degradation loses more information than bicubic degradation.

Table 1: Comparison on bicubic datasets (Set5 [1] and B100 [10]).

Method x2 x3 x4 x8
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic 33.66 0.9299 30.39 0.8682 2842 0.8104 24.40 0.6580
VDSR [5] 37.53 0.9590 33.67 0.9210 31.35 0.8830 25.93 0.7240
LapSRN [6] 37.52  0.9591 33.82 0.9227 31.54 0.8850 26.15  0.7380
wn  MemNet [11] 37.78 0.9597 34.09 0.9248 31.74 0.8893 26.16 0.7414
% EDSR [8] 38.11 0.9602 34.65 0.9280 3246 0.8968 26.96 0.7762
RCAN [10] 38.27 0.9614 34.74 09299 32.63 0.9002 27.31 0.7878
SRMDNF [14] 37.79 0.9601 34.12 0.9254 31.96 0.8925 - -
D-DBPN [4] 38.09  0.9600 - - 32.47 0.8980 27.21  0.7840
RDN [17] 38.24 09614 34.71 0.9296 3247  0.8990 - -
D2C-SR(Ours) 38.26 0.9619 34.72 0.9302 32.62 0.8999 27.46 0.7814
Bicubic 29.56  0.8431 27.21 0.7385 25.96 0.6675 23.67  0.5480
VDSR [7] 31.90 0.8960 28.83 0.7990 27.29 0.7260 24.49  0.5830
LapSRN [6] 31.08 0.8950 28.82 0.7980 27.32 0.7270 24.54  0.5860
IS MemNet [11] 32.08 0.8978 28.96 0.8001 27.40 0.7281 24.58 0.5842
= EDSR [¢] 3232 0.9013 29.25 0.8093 27.71 0.7420 24.81 0.5985
< RCAN [16] 32.41 09027 29.32 0.8111 27.77 0.7436 24.98 0.6058
SRMDNF [14] 32.05 0.8985 28.97 0.8025 27.49 0.7337 - -
D-DBPN [4] 32.27  0.9000 - - 27.72  0.7400 24.88 0.6010
RDN [17] 32.34 09017  29.26 0.8093  27.72  0.7419 - -

D2C-SR(Ours) 32.41 0.9041 29.28 0.8125 27.77 0.7466 24.98 0.6140
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Table 2: Effect of the margin and « in divergence loss (RealSR x4).
a margin  PSNR SSIM PSNR(I}) PSNR(I3) PSNR(I3) PSNR(I})

le-3  le-4 29.63 0.830  29.132 29.134 29.142 29.180
le-2  le-4 29.35 0.824  28.252 28.288 28.800 28.290
le-2  1le-3 29.26 0.824 28.234 28.200 28.587 28.203
le-1  1le-3 28.66 0.813  26.853 26.894 27.537 27.285

Table 3: Performance of different branches.
Scale PSNR SSIM PSNR(IL) PSNR(I3) PSNR(I}) PSNR(I3)

2x 34.40  0.926 34.340 34.311 34.314 34.323
3x 31.33  0.871 31.205 31.176 31.203 31.162
4x 29.72  0.831 29.547 29.559 29.539 29.567
8x 30.55  0.871 30.414 30.416 30.389 30.385

4.2 Performance of Different Branches

In Table 3, we list the performance on the different branches after divergence
and after convergence. It can be seen that the results of the different branches
have a divergent distribution effect, producing a variation in the PSNR. This is
due to the independence of the different branches of our divergence stage and the
stabilizing effect of the divergence loss. And the performance after convergence
significantly exceeded the performance of each branch individually.
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Fig. 3: Histogram of the average L2 distance.

4.3 Residual Domain in Divergence Loss

In Fig. 4, we show the visualization of the results after computing the residuals
between HR and SR prediction in divergence loss. Residual results have a higher
response in the high-frequency region. Therefore, adding residual processing to the
divergence loss allows the divergence predictions to focus more on high-frequency
texture regions, which is exactly what we want to achieve.
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Fig. 4: The visualization result of residuals in divergence loss on x4 scaling factor.

5 More Visual Results

5.1 More Visual Comparison Results on RealSR Dataset

We show more visual comparison results in Fig. 5. Our method is compared with
other methods, SRResNet [7], EDSR [8], RCAN [16], CDC [13] and LP-KPN [2].
As shown in the figure, our proposed D2C-SR framework can restore more
reasonable prediction results. Other classic super-resolution methods produce
unnatural results due to the ill-posed problem.

SRResNet EDSR ESRGAN

Canon_008 (x4) SRFlow LP-KPN RCAN Ours
PR IR

Bicubic

Bicubic SRResNet EDSR ESRGAN
SRFlow LP-KPN RCAN Ours

Fig.5: More Visual comparison for x4 SR on RealSR [2] dataset. We compare
Bicubic, SRResNet [7], EDSR [8], ESRGAN [12], SRFlow [9], RCAN [16], LP-
KPN [2], CDC [13] and our D2C-SR.
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5.2 More Visual Results on D2CRealSR Dataset

In Fig. 6, we show more visual results from our proposed D2C-SR method on
D2CRealSR dataset. We crop the images pairs and show the patch to facilitate
the presentation of image details. The LR images patchs are upsampled using
bicubic method.

D2CRealSR (x8) Bicubic Ours HR

Fig. 6: More visual results on D2CRealSR dataset.
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