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A Model Details

A.1 Decomposing GNN

In the following, we show the detailed deduction of implicitly modeling edges in
TIE. When omitting the normalization, bias, and activation, we can update the
edge propagation function implemented by MLPs in GNN by
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where W (l) ∈ Rd×3d is the parameter for MLPs, and [·; ·] denotes the concate-
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By combining Equation 7 into the self-attention formula in Transformer [3],
we have:

ω′
ij = (W

(l)
Q v

(l)
i )⊤(r

(l)
i + s

(l)
j ) (10)

= (W
(l)
Q v

(l)
i )⊤r

(l)
i + (W

(l)
Q v

(l)
i )⊤s

(l)
j , (11)

ω̂′
ij = softmax

(
ω′
ij√
d

)
, (12)

v
(l+1)
i =

∑
j

ω̂′
ij · (r

(l)
i + s

(l)
j ) (13)

=
∑
j

ω̂′
ij · r

(l)
i +

∑
j

ω̂′
ij · s

(l)
j (14)

= r
(l)
i +

∑
j

ω̂′
ij · s

(l)
j . (15)

A.2 Normalization Effects

Given Equation 7, we further modify the self-attention in Equation 11 and Equa-
tion 15 to include the effects of normalization in GNN for edges. Since GNN-
based methods usually incorporate LayerNorm [1] in their network architectures
that computes the mean and std of edge features to improve their performance
and training speed, we propose to apply the effects of normalization for each

edge in GNN to our model. For the mean µ
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When it comes to the scaling and shifting parameters in LayerNorm [1], we add
them into Equation 26 to better resemble the normalization effects.

B Experiment Details

B.1 Implementation Details

Inputs and outputs details. For FluidFall, FluidShake, and BoxBath, we only
use particles’ states at time t as inputs and output the velocities at time t+ 1.
For RiceGrip, we concatenate particles states from t − 2 to t as inputs and
output 6-dim vector for the velocity of the current observed position and the
resting position. For BoxBath, we output 7-dim vectors, where 3 dimensions for
the predicted velocities, and 4 dimensions for rotation constrains. The rotation
constraints, which predict the rotation velocities, are applied only on rigid par-
ticles, which is the same as mentioned in DPI-Net [2]. All states of particles,
such as the positions and velocities, are first normalized by mean and standard
deviations calculated on corresponding training set before they are fed into the
models.
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Training. We train four models independently on four domains, with 5 epochs
on FluidShake and BoxBath, 13 epochs on FluidFall, and 20 epochs on RiceGrip.
For common settings, we adopt Adam optimizer with an initial learning rate of
0.0008, which has a decreasing factor of 0.8 when the validation loss stops to
decrease after 3 epochs. The batch size is set to 16 on all domains. All models are
trained and tested on V100 for all experiments, with no augmentation involved.

Baseline details. For fair comparison, the following settings are the same with
TIE: inputs for models, number of training epochs on different domains, learning
rate schedules, and training loss on velocities. Hyper-parameters for baselines are
first chosen the same as their original papers, and then fine-tuned within a small
range of changes. For example, in terms of the batch size, 16 works better for
DPI-Net than the original settings.

B.2 Data Generation

Basic Domains. We use the same setting for our datasets as mentioned in
previous work [2]. FluidFall contains two fluid droplets with different sizes. The
sizes for droplets are randomly generated with one droplet larger than the other.
Positions and viscosity for droplets are randomly initialized. This domain con-
tains 189 particles with 121 frames for each rollout. There are 2700 rollouts in
training set and 300 rollouts in validation set. FluidShake simulates the water in
a moving box. The speed of the box is randomly generated at each timestamp. In
addition, the size of the box and the number of particles are various for different
rollouts. In basic training and validation sets, the number of particles varies from
450 to 627. This domain has 301 frames for each rollout. There are 1800 rollouts
in training set and 200 rollouts in validation set. RiceGrip contains two grippers
and a sticky rice. The grippers’ positions and orientations are randomly initial-
ized. The number of particles for rice varies from 570 to 980 with 41 frames for
each rollout in training and validation sets. There are 4500 rollouts in training
set and 500 rollouts in validation set. BoxBath simulates a rigid cube washed
by water in a fixed container. The initial positions of fluid block and rigid cube
are randomly initialized. This domain contains 960 fluid particles and 64 rigid
particles with 151 frames for each rollout. There are 2700 rollouts in training set
and 300 rollouts in validation set.

Generalization Domains. We release the details of generalization settings in
Table 1. We add more particles for FluidShake and RiceGrip, which we refer to
as L-FluidShake and L-RiceGrip respectively. The L-FluidShake includes 720 to
1368 particles, while L-RiceGrip contains 1062 to 1642 particles. On BoxBath, we
enlarge the fluid block and change the size and shape of rigid object. Specifically,
we add more fluid particles in Lfluid-BoxBath to 1280 fluid particles, while we
enlarge the rigid cube in L-BoxBath to 125 particles. We also change the shape of
the rigid object into ball and bunny, which we refer to BallBox and BunnyBath
respectively. The number of test rollouts and the number of frames for each
rollout are the same as the corresponding basic domains.
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Table 1. Details of generalization settings. We list the number of particles in both
training domains and generalization domains. The lists of numbers in L-FluidShake
and L-RiceGrip are the range of particles, while the number of rigid and fluid particles
in generalized BoxBath are listed separately.

Domains Training Settings Generalization Settings

L-FluidShake [450, 627] [720, 1368]
L-RiceGrip [570, 980] [1062, 1642]
Lfluid-BoxBath Fluid: 960. Rigid: 64 Fluid: 1280. Rigid 64
L-BoxBath Fluid: 960. Rigid: 64 Fluid: 960. Rigid: 125
BunnyBath Fluid: 960. Rigid: 64 Fluid: 960. Rigid: 41
BallBath Fluid: 960. Rigid: 64 Fluid: 960. Rigid: 136

B.3 Rendered Rollouts

We visualize some rollouts on BoxBath and its generalized domains, which are
complex domains with multi-materials interactions. We simplify BoxBath into
5 key steps: 1. the rigid object flooded by fluid hits the wall; 2. the rigid object
is thrown into the air; 3. the rigid object falls into the fluid; 4. the fluid, after
hitting the wall, pushes the rigid object; 5. the rigid object slows down and stops
moving. The visual results and analysis are shown in the following. Our TIE+
achieves more faithful rollouts on all the domains, suggesting the effectiveness
of our implicitly modeled edges and the abstract particles.
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Fig. 1. Qualitative results on BoxBath. For step 2 and 3, the rigid cube is flooded
into the air and pushed away from the right wall. Our TIE+ is able to achieve more
faithful rollouts even with more accurate rotation angles, and the cube is pushed far
away enough from the right wall. For step 5, when the cube slows down and finally
stops, the position of the rigid cube predicted by our TIE+ is closer to the ground
truth. For the simulations of the fluid particles, our model achieves more vivid results
compared with other models. For example, the surface of water is smooth and is closer
to the ground truth.
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Fig. 2. Qualitative results on Lfluid-BoxBath, where we add more fluid particles.
When focusing on the rigid cube, the positions and rotation angles achieved by our
TIE+ are much closer to the ground truth. When focusing on the fluid particles, our
TIE+ predicts more vivid wave, which floods the box and pushes it towards left in a
more faithful manner.
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Fig. 3. Qualitative results on L-BoxBath, where we enlarge the rigid cube. Notice that
the rigid cubes predicted by DPI-Net and GNS tends to rotate and move in the same
place, DPI-Net and GNS have more difficulties in being generalized to this domain.
The rigid cube predicted by GraphTrans is overly pushed by the wave at t = 56, while
does not fully interact with the left wall to bounce back at t = 124. For both the fluid
part and the rigid part, TIE+ still predicts more faithful results.
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Fig. 4. Qualitative results on BallBath, where we change the cube into ball. The
balls predicted by both DPI-Net and GNS rotate and move in the same place till the
end, while GraphTrans has difficulties predicting the positions of the ball. TIE+ still
achieves faithful rollout.
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Fig. 5. Qualitative results on BunnyBath, where we change the cube into bunny with
more complex surfaces. TIE+ achieves more faithful rollout. At time t = 2, we show
the shape of the bunny, which has complex surfaces. At time t = 45, while TIE+ is
able to rollout vivd dynamics of fluid particles, TIE+ can predict closer positions of
the bunny, which is rotating and flying in the air.
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