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Abstract. Rendering high-resolution (HR) graphics brings substantial
computational costs. Efficient graphics super-resolution (SR) methods
may achieve HR rendering with small computing resources and have
attracted extensive research interests in industry and research communi-
ties. We present a new method for real-time SR for computer graphics,
namely Super-Resolution by Predicting Offsets (SRPO). Our algorithm
divides the image into two parts for processing, i.e., sharp edges and flat-
ter areas. For edges, different from the previous SR methods that take
the anti-aliased images as inputs, our proposed SRPO takes advantage
of the characteristics of rasterized images to conduct SR on the raster-
ized images. To complement the residual between HR and low-resolution
(LR) rasterized images, we train an ultra-efficient network to predict the
offset maps to move the appropriate surrounding pixels to the new posi-
tions. For flat areas, we found simple interpolation methods can already
generate reasonable output. We finally use a guided fusion operation to
integrate the sharp edges generated by the network and flat areas by
the interpolation method to get the final SR image. The proposed net-
work only contains 8,434 parameters and can be accelerated by network
quantization. Extensive experiments show that the proposed SRPO can
achieve superior visual effects at a smaller computational cost than the
existing state-of-the-art methods.

1 Introduction

With the popularity of 4K or even 8K display devices, rendering graphics at
ultra-high resolution and high frame rates has attracted extensive research in-
terests in industry and research communities. However, achieving such a goal is
very challenging, as rendering graphics at high resolutions will bring huge compu-
tational costs, which poses severe challenges to graphics algorithms and graphic
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computing devices. Especially for mobile devices, the huge computational cost
also means high power consumption. Finding ways to enjoy high resolutions and
high frame rates without compromising graphics quality as much as possible has
become an imperative issue.

In addition to compromising graphics effects and texture quality, there is a
new paradigm in recent years to render low-resolution (LR) images first and
then super-resolve them to obtain high-resolution (HR) images. NVIDIA Deep
Learning Super Sampling (DLSS) technology and AMD FidelityFX Super Res-
olution (FSR) are two representative solutions that follow this new paradigm.
However, the poor visual effect and computationally unfriendly features of these
super-resolution (SR) methods restrict the application of such techniques. For
example, FSR uses traditional filtering methods to upsample and sharpen LR
images. This method is relatively easy to deploy on various graphics comput-
ing devices, but its visual effect is far from ideal. DLSS uses state-of-the-art
deep learning-based SR methods to obtain better perceptual effects, but deep
networks’ high computational cost makes such a solution only available on ded-
icated acceleration devices called NVIDIA Tensor Core. There is no solution
available for other devices that do not have such powerful neural computing
power.

Deep learning-based SR methods (SR networks) directly map LR rendered
images to HR rendered images with many stacked convolutional layers/filters.
One of the reasons for its success is to use a large number of learnable parameters
in exchange for sufficient model capacity. Some successful SR networks even
contain tens of millions of parameters, e.g., EDSR [19], and RRDBNet [27].
The state-of-the-art efficiency-oriented SR network also contains more than 200k
parameters, far short of real-time SR requirements. An efficient deep model
can be very “shallow” for widely deployed graphic devices, i.e., only three or
fewer convolutional layers. However, within this constraint, deep learning has no
precedent for success.

In this paper, we propose an ultra-efficient SR method for computer graph-
ics, especially for mobile platforms and their graphics applications.. Some ob-
servations inspire our approach. Firstly, we argue that generating rich, detailed
textures for small SR networks is difficult. In this case, keeping the edges of the
SR image sharp is the most effective way to improve the perceptual effect. Our
method is mainly used to generate such sharp edges. Secondly, SR is generally
performed on anti-aliased images (i.e., FSR) because anti-aliased images typi-
cally have gradient distributions and visual effects similar to natural images. It
is very straightforward to borrow an algorithm that works on natural images
for anti-aliased images. However, the edges of the anti-aliased images have more
complex gradient distributions, and it is difficult for small SR networks to handle
such complex gradient changes. Rasterized images have simpler color changes,
obvious truncation of edges, and similar distributions under various rendering
engines than anti-aliased images. These properties allow us to perform SR on
rasterized images using simple operations without wasting the model’s capacity
to generate sharp edges.



Super-Resolution by Predicting Offsets 3

1-Layer CNN 3-Layer CNN 7-Layer CNN 30-Layer Residual CNN Ground Truth

Differences

0.00

0.05

0.10

0.15

0.20

Fig. 1. For SR networks, the processing of edges is very important. It can be seen
that the 3-layer network mainly improves the edge compared to the network with only
one layer. Continuing to increase the network to seven layers did not bring significant
changes. Until we deepen the network to 30 layers, the network cannot generate sharper
edges. Nevertheless, for the real-time SR problem explored in this paper, how to use
a 3-layer network to generate as sharp, visually pleasing edges as possible is the key
issue.

In the light of the above discussion, we propose to perform SR directly on
rasterized images. The difference between HR and LR rasterized images usually
occurs in the change of edge pixels. This change is spatially abrupt (the “jagged”
edges), and it is difficult to make up for this difference with a simple convolutional
network. Our method predicts offsets that shift surrounding similarly colored
pixels to their desired positions to compensate for this sharp difference. The
new SR rasterized image obtained by this method retains the characteristics of
the rasterized image well and can produce sharp edges. We fuse these edges with
other areas obtained by the interpolation method to get the final output image.
With subsequent anti-aliasing (AA) algorithm, we can obtain super-resolved
rendered graphics at a small cost. Our final method uses only a three-layer
convolutional neural network, which can also be quantized and accelerated and
run on various devices with 8-bit integer without loss of final effects. We present
extensive experiments, and the final results show sharp edges and good visual
performance.

2 Related Work

Anti-Aliasing is a longstanding problem in computer graphics. Aliasing oc-
curs when sampling is insufficient during rendering because each pixel can only
belong to a specific object and receive a unique pixel value, so jagged and saw-
toothed effects can appear at the edges of such an object. Using higher sam-
pling rates is the most straightforward solution to ameliorate aliasing effects,
i.e., super-sample anti-aliasing (SSAA) and multisample anti-aliasing (MSAA).
These approaches are computationally expensive and difficult to be compatible
with modern rendering methods such as deferred lighting/shading, and thus not



4 Gu et al.

1X Rasterized image 2X Rasterized image 3X Rasterized image

Fig. 2. Samples of the generated training
images. We rendered 300 images of ran-
dom geometric objects with random gra-
dient colors, including triangles, circles,
rings, lines and bezier curves.

1X Rasterized image 2X Rasterized image
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Fig. 3. The differences between the ras-
terized images and the anti-aliased im-
ages. The residual images are between
the nearest neighbor upsampled LR im-
age and the HR image.

suitable for real-time applications for mobile devices. Another alternative anti-
aliasing paradigm is optimising the visual effects of rasterized images through
image post-processing methods. The most used alternative to MSAA was edge
detection and blurring, which is simple, but the results are significantly lower
quality than MSAA. In 2009, Reshetov proposed morphological anti-aliasing
(MLAA) [23] that performs anti-aliasing with rule-based pixel blending accord-
ing to certain patterns in the neighborhood. MLAA has gained extensive atten-
tion and applications and inspired many post-processing AA algorithms, e.g.,
FXAA, SMAA [12], Filmic SMAA and DLAA. Most of these algorithms have
already been applied and created good visual effects. However, AA algorithms
do not increase the resolution of the rendered image, and they can only reduce
jagged artifacts at the native resolution.
Super-Resolution (SR) aims at creating HR images according to the LR
observations. The simplest way to perform SR is through interpolation-based
methods that generate HR pixels by averaging neighboring LR pixels, e.g., bicu-
bic, bilinear and Lanczos. These methods are computationally efficient, but the
results are over-smoothed as the interpolated pixels are locally similar to neigh-
bouring pixels and thus have insufficient visual effects. AMD FSR algorithm first
employs a Lanzocs-like upsampling method and uses a sharpening filter to opti-
mize overly smooth edges. A new fundamental paradigm shift in image process-
ing has resulted from the development of data-driven or learning-based methods
in recent years. Since Dong et. al. [5] introduce the first SR network, plenty of
deep learning based SR methods have been proposed, including deeper networks
[6,14,24], recurrent architectures [15,25], residual architectures [19,17,27,18], and
attention networks [31,4,3]. Network-based methods are also used in computer
graphics [13,26]. More related to this work, Xiao et al. [29] propose a dense video
SR network for graphics rendering. These SR networks can achieve impressive SR
results, but the massive parameters and the expensive computational cost limit
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Fig. 4. The proposed SRPO network architecture. The whole network contains only
three convolution layers, and no other computationally expensive operation is used.
The output of this network is a two-channel offset map instead of a three-channel
image.

their practice in real applications. The development of lightweight SR networks
is also a popular research topic. [24] propose sub-pixel upsampling operation
for SR networks and propose ESPCN as an early attempt in this field. [1] pro-
pose CARN that uses group convolution and implements a cascading mechanism
upon a residual network for efficient SR. IMDN [11] extracts hierarchical fea-
tures step-by-step by split operations and then aggregates them by simply using
a 1× 1 convolution Zhao et al. [33] construct an effective network with pixel at-
tention, and the entire network contains only 200K parameters. Despite several
years of attempts in this direction, even today’s state-of-the-art network is far
from being applied to real-time image rendering. More related to this work, [20]
proposes edge–SR (eSR), a set of shallow convolutional layer SR networks that
upscale images for edge devices. This level of computational overhead is likely to
be used in real-time rendering. Thus we will also focus on the comparison with
edge-SR in this paper.

3 Method

The methods studied in this paper all have strict computational constraints. It is
difficult for the network to generate so-called “rich textures” with a small capac-
ity. The resulting images are hardly any real improvement over more straight-
forward interpolation methods [20]. To generate realistic rich textures, we need
to exponentially enlarge the networks we used, or even use generative adversar-
ial models [27,10] (see Fig. 1). Many works reveal that a human’s perception
of an image’s structure greatly affects the whole image’s subjective perception
[28,8,10,9]. Sharp edges are among the most critical parts affecting this struc-
ture’s perception. With limited resources, we argue that enhancing the edges is
more appropriate than generating textures in complex and challenging areas, as
the interpolation method can already be an economical choice for these areas.
Our method first upsamples the image using interpolation to ensure comparable
results in areas other than edges. It then generates images with fine and sharp
edges through the proposed network. At last, we combine the advantages of both
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through a fusion operation. We first introduce the proposed SRPO network in
Sec 3.1 and then describe the fusion method in Sec 3.2.

3.1 SRPO Network

Motivation. We first describe the motivation for our proposed SRPO network.
The graphics rendering pipeline can be summarized as four stages [2]: application
stage, geometry processing stage, rasterization stage and pixel processing stage.
The geometric primitive is sampled and discretized into rasterized images in
the rasterization stage. The pixel processing stage involves pixel shading and
blending operations. The post-processing anti-aliasing step is also implemented
at the end of this stage. The current real-time graphics SR methods (e.g., AMD
FSR) usually take the anti-aliased images as inputs, as these images have similar
edges to natural ones. Under severe computation constraints, we can only use a
minimal number of convolution or filtering operations to process the LR anti-
aliased images. The method at this time does not have a significantly larger
model capacity than the linear models, making it very difficult to generate sharp
edges.

Our network design begins with the observations of the rasterized and anti-
aliased images. As shown in Fig. 3, the rasterized image shows a jagged-like
appearance, while the anti-aliased image has complex grayscale pixels along the
edges. These edges make the image look more natural because they simulate the
gradient distribution in natural images. At higher resolutions, rasterized images
still exhibit the same jagged edges, and its anti-aliased images use finer-grained
gradients to retouch the edges of the image. The residuals are equally complex
due to the complex edges of both HR and LR anti-aliased images. This requires
SR methods to generate complex residual images to compensate for it. On the
contrary, the residuals of rasterized images are very regular. We only need to
make up for this part of the pixel difference to get an HR rasterised image. This
inspires us to develop an SR method on rasterized images at a small cost.

We further dive into the difference between high and low resolution rasterized
images. When converting an LR rasterized image to an HR rasterized image, we
only need to change the image at the edges from background pixel values to
foreground pixel values, or vice versa. The pixel values that need to be changed
can usually be found directly from the surrounding – we can move the appro-
priate surrounding pixels to the new positions to complete the upsampling of the
rasterized image. In this paper, we use a pixel-level offset map to represent the
movement of pixels. Our experiments show that such an offset can be obtained
simply by training an ultra-lightweight network. This leads us to our approach:
SR by predicting offsets (SRPO).

Network architecture. We train a simple convolutional neural network F
to predict the pixel-level offset map. This network takes the three-channel LR
rasterized image ILR ∈ R3×H×W as input and outputs a two-channel (x-axis
and y-axis) offset map Ω = F (ILR), Ω ∈ R2×sH×sW , where s is the SR factor.
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The values in Ω indicate which pixel in ILR the current pixel is composed of.
For example, (0, 0) means no offset, that is, the corresponding pixels in ILR

are directly used for filling HR results. (−1,−1) means to use the pixel relative
to the lower-left corner of the current pixel. According to Fig. 3, most of the
offsets should be 0. The super-resolved rasterized image ISR

Ω ∈ R3×sh×sw can
be obtained by projecting the pixels of ILR according to the offset map ISR

Ω =
Pnearest(I

LR, Ω). The subscript nearest indicates that the projection process uses
the nearest neighbor resampling method (the offsets are rounded) to produce
similar sharp jagged edges.

The architecture of the proposed network is illustrated in Fig. 4. The whole
network consists of two convolution layers. The first convolution layer extracts
features from ILR and generates 16 feature maps. The second convolution layer
performs a non-linear mapping to these feature maps and generates the other
16 feature maps. For these two layers, the kernel size is set to 5 × 5, and the
activation function is ReLU [7]. Note that the computation time of such a layer
is only about two milliseconds for a 720P input image when using 8-bit integers
for low-precision computations on some specially optimized computing devices.
A nearest neighbor upsampling operation is performed on the feature maps pro-
duced by the second convolutional layer. At last, we use another convolution
layer to aggregate the upsampled 16 feature maps to the offset map Ω. The
entire network contains 8434 learnable parameters.

Network Training. The proposed network is trained self-super-vised as the
ground truth offset maps are unavailable. The self-supervised learning process is
modelled based on the fact that the projected ISR

Ω should be close to the ground
truth HR rasterized image IHR. Recall that we want the result of the network
could preserve image edges/structure information; the objective function can be
formulated using SSIM loss [28,32]. The SSIM loss for pixel [i, j] is defined as:

L(i, j) =
2µ(ISR

Ω )[i,j]µ(I
HR)[i,j] + C1

µ(ISR
Ω )2[i,j] + µ(IHR)2[i,j] + C1

×
2σ(ISR

Ω , IHR)[i,j] + C2

σ(ISR
Ω )2[i,j] + σ(IHR)2[i,j] + C2

, (1)

where the subscript [i, j] indicates pixel index, C1 and C2 are constant, µ(·), σ(·),
σ(·, ·) represent means, standard deviations and cross-covariance, and we omitted
the dependence of means and standard deviations. The SSIM loss for the whole
image is L = 1

s2WH

∑W
i

∑H
j 1 − L(i, j). Means and standard deviations are

computed with a Gaussian filter. The resampling method used in the projection
process can not be the nearest neighbor method during training as it produces
only discrete results and is non-differentiable. We use differentiable resampling
methods such as bilinear during training to ensure the back-propagation of the
network. Training using Eq (1) can automatically generate reasonable offset
maps, although we do not know which offset map is optimal.

For the training data, obtaining real aligned data for training is challenging
under most circumstances. For example, one may need to prepare a lot of aligned
HR-LR image pairs for training to enable NVIDIA DLSS in one game. In this
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(c) Offset Map (d) Final Result(a) Offset-SR (b) Interpolation Result

Fig. 5. We combine the edges in the offset-SR ISR
Ω (a) and other areas in the interpo-

lation upsampling result ISR
↑ (b) through the offset map (c). The final result is shown

in (d). As can be seen, there are some non-smooth color transitions in (a) (see the red
arrow) because the offset is zero in those places. Its actual effect is the effect of nearest
neighbor upsampling. The final effect avoids this while preserving the edges (see the
blue arrow).

paper, we show that we can use general and simple rendered images for training,
and the effect of the model can be well generalized to various game scenarios.
Recall that the network generates sharp edges while upsampling of other areas
is done by interpolation methods. Thus our training data only needs to contain
a wide variety of edges. We rendered 300 images of random geometric objects
with random gradient colors, including triangles, circles, rings, lines and bezier
curves. Fig. 2 shows some image examples used for training. The LR training
images are of size 128 × 128 and the ×2 and the ×3 HR images are of size
256× 256 and 384× 384, respectively.

For optimization, we use Adam optimizer [16] with β1 = 0.9, β2 = 0.99. The
initial learning rate is 3 × 10−4 and halved every 7k iterations. In the training
phase, we set total 40k iterations for our model. The mini-batch size is set to 16.

3.2 Offset-Guided Image Fusion

Although the obtained the SRPO result ISR
Ω can bring images with sharp edges,

the rest areas of the image are similar to the effect of nearest neighbour up-
sampling (the offsets of these areas are close to zero) and cannot be directly
used as the final output. An example is show in Fig. 5 (a). For convenience, we
use the term ISR

Ω as offset-SR. Simple interpolation methods can obtain reason-
able upsampling results for these relatively flat areas. In this work, we use the
Lanczos interpolation method, and we use ISR

↑ to represent the result. Next, we
compute the linear combination of the corresponding pixels of the two images to
fuse the sharp edges of the offset-SR ISR

Ω with other areas of interpolated image
ISR
↑ . The final result can be formulated as ISR = α ⊙ ISR

Ω + (1 − α) ⊙ ISR
↑ ,

where the α ∈ [0, 1] is the blending mask, ⊙ is the element-wise product. The
offset map Ω contains the movement information for every pixel. If one pixel
is replaced with another value during projection, this pixel belongs to an edge.
We can use the offset map as the blending mask only with some processing:
α[i,j] = ωk ⊗ I

{
⌊Ω[i,j]⌉ ≠ 0

}
, where I{·} is the indicator function and ω repre-

sent a 3× 3 Gaussian blur filter with sigma 1.5.
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Table 1. The quantitative results, the amount of floating-point operations and pa-
rameters of the different networks involved in our experiments. ↑ means the higher the
better while ↓ means the lower the better.

Method Parameters FLOPs (G)
Metrics

PSNR ↑ SSIM ↑ LPIPS ↓
FSRCNN 12.64K 20.54 27.26 0.8343 0.1687
ESPCN 8.10K 6.30 27.16 0.8195 0.1775
eSR-CNN 1.97K 1.53 27.28 0.8495 0.1547
eSR-TM 1.57K 1.22 27.20 0.8506 0.1676
eSR-TR 0.6K 0.47 27.22 0.8490 0.1714
eSR-Max 0.036K 0.03 27.03 0.8504 0.1513
AMD FSR - - 27.56 0.8639 0.1650
SRPO (ours) 8.43K 8.50 26.97 0.8532 0.1501

4 Experiments

4.1 Comparison

We prepared our testing data using Unreal Engine 4 with online downloaded
scenes and assets. We render the testing image with one sample per pixel under
different resolutions and keep the rasterized and anti-aliased images. We also ap-
plied MLAA anti-aliasing for the HR rasterized images for the final comparison.
All the tests are conducted using tone-mapped images. There are nine different
scenes and hundreds of images, including a wide range of possible scenes in video
games, e.g., city streets, gardens, palaces, people, indoor rooms, and spaceship
interiors.

We first present a qualitative comparison of the proposed and existing meth-
ods. For the comparison, we include two classic light-weight SR networks FSR-
CNN1 [6] and ESPCN2 [24], a series of SR networks designed for edge computing
called eSR3 [20] and AMD FSR. Note that FSRCNN includes seven layers and
is not designed for real-time processing. We include them only for comparison.
All the trainable methods are re-trained using our paired data for the best per-
formance. For the AMD FSR method, we use the open-source implementation.
Except for FSR, all the networks are trained and tested using Pytorch framework
[22].

Fig. 6 show some representative regions in our test set. It can be observed
that the proposed method produces sharp edges very close to HR images. This
greatly improves the overall perceptual quality of SR images. While other meth-
ods use neural networks to directly predict output pixels, producing such sharp
edges is difficult. The overall visual effect tends to be blurred. At some significant

1 For FSRCNN, we use the hyper-parameter of D = 56, S = 12 and M = 4
2 For ESPCN, we use the hyper-parameter of D = 22 and S = 32
3 For eSR family, we select four versions of eSR: eSR-MAX with K = 3 and C = 1;
eSR-TR with K = 5 and C = 2; eSR-TM with K = 7 and C = 4; eSR-CNN with
C = 4, D = 3 and S = 6.
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Fig. 6. Qualitative comparison of different methods using representative images from
our test datasets. The SR factor is 2.

jagged edges (see the example #1, #2 and #6 in Fig. 6 ), the images generated
by the other methods still show the jaggedness of the LR image but are only
blurred. The proposed method performs well in these domains to remove alias-
ing amplification caused by upsampling. We can also observe that the proposed
method still outperforms other methods even on some less apparent edges (with-
out strong color contrast, see #8 in Fig. 6). The proposed SRPO does not regard
these areas as edges that need to recover by moving pixels. The blending pro-
cess provides suitable fallbacks for additional robustness. If the result of SRPO
leaves any edge unprocessed (the corresponding offsets are all zeros), The whole
method will go back to interpolation upsampling.

Generally, upsampling with a larger SR factor in real-time rendering will
significantly drop image quality. Here we show the comparison results under a
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Fig. 7. Qualitative comparison of different methods using representative images from
our test datasets. The SR factor is 3. Compared with ×2 SR, a larger SR factor brings
challenges to all the methods. However, the proposed method can still produce sharp
edges. This is mainly attributed to its paradigm of predicting offsets.

higher SR factor of 3 in Fig. 7. For this experiment, we compare with FSRCNN
(D = 56, S = 12 and M = 4), ESPCN (D = 16 and S = 6) and eSR-CNN
(C = 8, D = 3, S = 15). The proposed network remains the same architecture
as the SR factor 2, only changing the upsampling to ×3. The FSR does not have
×2 version. As one can see, the proposed method maintains a good performance
on the edges and surpasses the existing methods.

We next present the quantitative comparison of different methods. The com-
parison results are shown in Table 1. We also show the parameter numbers and
floating-point operations [21] (FLOPs) of these methods. Since the optimiza-
tion of some operations under different hardware environments is different, we
use FLOPs to indicate the computational costs for each method without loss
of generality. The FLOPs is calculated through a 3× 1280× 720 (720p) image.
It can be seen that since we do not optimize using pixel-wise losses such as l1
and l2-norm, the PSNR value of the proposed method is relatively low. But for
the other two indicators, SSIM [28], and LPIPS [30], which are considered to be
more relevant to human subjective evaluation [8], the proposed method achieves
the level of superior or sub-optimal. This illustrates the pleasing visual effect of
the proposed method.
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Fig. 8. The comparison of quantization effects. For ESPCN and eSR-CNN, the quanti-
zation process introduces artifacts that significantly affect image quality. The proposed
method is robust to small perturbations because the offset used in the end should be
changed to a rounded version.
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Fig. 9. The visualization of the intermediate training results. The offset maps (bilinear)
indicate the float-point offsets used during training (bilinear resampling). The offset
maps (nearest) indicate the rounded offsets. The color shows the magnitudes of the
offset vectors.

4.2 Quantization

The computation of deep learning methods involves intensive operations. Typ-
ically, deep learning training is conducted using 32-bit floating-point numbers.
While efforts are being made to develop efficient SR networks, reducing inference
computations to lower bit-depth representations can improve efficiency and re-
duce power consumption. For example, half-precision (16-bit) computations tend
to be more efficient, and some advanced processing units can support 8-bit inte-
ger computations with greater efficiency. The throughput of 8-bit integer com-
putations is almost twice that of half-precision and 4 times of single-precision.
The good news is that more and more integrated circuits, especially mobile SoCs
(system on a chip) have already integrated such advanced processing units, en-
abling similar technology to be applied on a larger scale. After training using
single-precision (FP32), we apply static quantization [26] to all the layers of our
network.
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(a) (b)

Fig. 10. Some failure cases of the proposed method. In case (a), the network cannot
identify edges with such slopes due to the limited receptive field. In case (b), the
network did not recognize this edge due to the low edge contrast.

As shown in Fig. 8, for other methods, quantization brings severe performance
degradation and artifacts due to insufficient precision. There are two reasons for
this phenomenon. First, since the existing network outputs pixel intensity values,
the number of intensity values that the network can generate under an 8-bit
integer is small. Artifacts due to loss of accuracy are unavoidable. Second, since
the network involved in this paper is itself a small model, further quantification
has a more noticeable impact on the final effect.

The method proposed in this paper is additionally robust to the loss of com-
puting precision because the offset output by our method itself needs to be
rounded. Although the raw output of the SRPO network will also be affected, a
certain loss of precision will not significantly change the rounded offset (unless
the value itself is around 0.5). Shifted pixels can retain their original precision
(even for 16-bit high-dynamic images). Therefore, the proposed method is more
suitable for quantification.

4.3 Interpretation of the Learning Process

We take a deep dive into the learning process of the proposed self-supervised
scheme. Recall that we do not have any prior knowledge about what kind of offset
map it should be. However, the self-supervised training automatically generates
the desired offset. In Fig. 9, we visualize the training of the SRPO network.
We have the following findings. Firstly, the training of offset is not achieved
overnight. In the initial stage of training, although the output offset-sr does not
change, the floating-point part of the offset has been evolving (see 1 and 100
iterations). The offset that significantly impacts the result during the training
process will have a larger loss value, which the network will quickly learn. For
example, the lower boundary of the orange horizontal bar in Fig. 9 learns faster
than the upper boundary because the gradient of the lower boundary is larger
than the upper boundary. As training progresses, complex structures appear in
the optimized offset map. If the automatic learning of the network does not
reveal it, such a complex structure is challenging to be summed up by the rules
of manual design. The self-supervised learning paradigm plays an important role
in this work.
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4.4 Limitations

The first limitation is the scope of application of the proposed method. Many ad-
vanced graphic technologies in the industry like temporal supersampling, checker-
board rendering, variable-rate shading, or dynamic resolution scaling may affect
the ideal condition of the rasterized images assumed in this work. However, we
found that there can be little overlap between these techniques and the goals of
this paper. The techniques described herein are more applicable to mobile de-
vices and their graphics applications. On these devices, most advanced graphics
techniques are difficult to apply. The proposed method is more suitable for these
simpler graphics applications, which are equally important.

Secondly, the limited capacity of the proposed network also brings limita-
tions. The first problem is that although the network is already very small and
can be quantized, it may still not be enough for very high frame rate processing.
We need more advanced network architecture designs, quantization methods,
and computing devices to overcome this problem. Also, due to the limited net-
work depth and receptive field, the results of SRPO still have some aliasing for
some difficult edges, see Fig. 10 (a). This is because detecting a line with such a
slope requires a larger receptive field, which is difficult for a network with only
three layers to achieve. Another limitation is the edges with low contrast, as
shown in Fig. 10 (b). In these areas, the network is hard to identify whether the
pixel changes are caused by an edge or noise and color gradient.

There are many more challenging sources of aliasing in computer graphics,
such as sub-pixel aliasing, thin ropes, thin objects that disappear and appear
partially or entirely and shading aliasing. The proposed method can be expected
to suffer from challenges, but these scenarios are also challenging to existing
solutions. This paper is still a solid step in this direction.

5 Conclusion

In this paper, we propose a new method for real-time rendering. The proposed
method uses an SRPO network to obtain images with sharp edges and then
combines these edges with interpolation results. The SRPO network does not
directly generate pixels. Instead, it moves appropriate surrounding pixels in LR
rasterized image to the new positions to form the upsampled rasterized image.
We also investigate the quantization effect of the proposed method. The proposed
method can generate SR results with sharp edges and show good visual quality
with less than 10K parameters.
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