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Abstract. Recently, learned video compression has drawn lots of atten-
tion and show a rapid development trend with promising results. How-
ever, the previous works still suffer from some criticial issues and have
a performance gap with traditional compression standards in terms of
widely used PSNR metric. In this paper, we propose several techniques to
effectively improve the performance. First, to address the problem of ac-
cumulative error, we introduce a conditional-I-frame as the first frame in
the GoP, which stabilizes the reconstructed quality and saves the bit-rate.
Second, to efficiently improve the accuracy of inter prediction without in-
creasing the complexity of decoder, we propose a pixel-to-feature motion
prediction method at encoder side that helps us to obtain high-quality
motion information. Third, we propose a probability-based entropy skip-
ping method, which not only brings performance gain, but also greatly
reduces the runtime of entropy coding. With these powerful techniques,
this paper proposes AlphaVC, a high-performance and efficient learned
video compression scheme. To the best of our knowledge, AlphaVC is the
first E2E AI codec that exceeds the latest compression standard VVC on
all common test datasets for both PSNR (-28.2% BD-rate saving) and
MSSSIM (-52.2% BD-rate saving), and has very fast encoding (0.001x
VVC) and decoding (1.69x VVC) speeds.

1 Introduction

Video data is reported to occupy more than 82% of all consumer Internet traf-
fic [10], and is expected to see the rapid rate of growth in the next few years, espe-
cially the high-definition videos and ultra high-definition videos. Therefore, video
compression is a key requirement for the bandwidth-limited Internet. During the
past decades, several video coding standards were developed, such as H.264 [35],
H.265 [29], and H.266 [7]. These methods are based on hand-designed modules
such as block partition, inter prediction and transform [2], etc. While these tra-
ditional video compression methods have made a promising performance, their
performance are limited since the modules are artificially designed and optimized
separately.

Recently, learned image compression [8,11,15,26] based on variational auto-
encoder [20] has shown great potential, achieving better performance than tra-
ditional image codecs [5, 7, 32]. Inspired by the learned image compression, and
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combined with the idea of traditional video codecs, many learning-based video
compression approaches [1, 14,16,17,19,21,24,27] were proposed.

Given the reference frame, variant kinds of motion compensation (align-
ment) methods were proposed like scale-space alignment [1], feature-based align-
ment [19], multi-scale feature-based alignment [28]. These methods aim to im-
prove the diversity of motion compensation and result in more compression-
friendly predictions. However, such methods increase the complexity on both
encoder and decoder side. Inspired by AMVP (Advanced Motion Vector Pre-
diction) on traditional video compression methods [29], we expect the encoder
side to predict a more accurate motion information. Further, at the encoder side
of AlphaVC, we propose a pixel-to-feature motion prediction method that can
obtain high-quality motion information without increasing the complexity of the
decoder.

(a) (b)

Fig. 1: (a): BD-rate against VTM in terms of PSNR (Lower is better). (b): BD-
rate against VTM as a function of encoding/decoding time on 1080p videos.

Existing learned video compression can be divided into two categories: Low-
Delay P mode and Low-Delay B/Random-Access mode. For the Low-Delay
P mode, the methods [1, 16, 19, 28] only include the P(predictive)-frames and
I(image)-frames. For the Low-Delay B or Random-Access mode, the methods [14,
27] insert the B(bidirectional predictive) frames into the GoP to improve com-
pression performance. AlphaVC focuses on the Low-Delay P mode. In this mode,
due to the accumulation error in P-frame [23], most existing methods have to use
the inefficient I-frame as the first frame in limited length GoP. Unlike the existing
methods, we overcome this issue by introducing a conditional I-frame (cI-frame)
as the first frame in the GoP, which stabilizes the reconstructed quality and
achieves better performance.

In addition, we all know that the entropy coding [13,18] can only run serially
will increase the runtime. Moreover, the auto-regressive entropy module [26],
which significantly increase the decoding time, is always used on learned image
codecs for a higher compression ratio. We found that most elements of the la-
tents usually have very low information entropy, which means the probability
distributions of these elements estimated by entropy module always is highly
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concentrated. Inspired by this, we propose an efficient probability-based entropy
skipping method (Skip) which can significantly save runtime in entropy coding,
and achieve higher performance without auto-regressive.

With the help of the above technologies, AlphaVC achieves the highest E2E
compression performance while being very efficient. As shown in Fig. 1, the pro-
posed AlphaVC outperforms VTM-IPP/VTM-LDP by 28.2%/6.59% , where the
VTM is the official software of H.266/VVC, the IPP denotes the configuration
using one reference frame and flat QP, and the LDP denotes the better con-
figuration using multiple references and dynamic QP. Note the configuration of
AlphaVC is the same as IPP. To the best of our knowledge, AlphaVC is the only
learning-based video codec that can consistently achieve comparable or better
performance with VTM-LDP in terms of PSNR on all common test datasets.
Comparing with the state-of-the-art learning-based video codecs [28], AlphaVC
reduces the BD-rate by about 25% while faster encoding and decoding.

Our contributions are summarized as follows:

1. We introduce a new type of frame named conditional-I frame (cI-frame) and
propose a new coding mode for learned video compression. It can effectively
save the bit rate of I-frame and alleviate the problem of accumulated error.

2. The proposed motion prediction method, utilizing the idea of pixel-to-feature
and global-to-local, can significantly improve the accuracy of inter-frame
prediction without increasing decoding complexity.

3. An efficient method in entropy estiamtion module and entropy coding have
higher performance and faster encoding and decoding time.

2 Related Work

2.1 Image Compression

In the past decades, the traditional image compression methods like JPEG [32],
JPEG2000 [9] and BPG [5] can efficiently reduce the image size. Those methods
have achieved a high performance by exploiting the hand-crafted techniques,
such as DCT [2]. Recently, thanks to variational autoencoder (VAE) [20] and
scalar quantization assumption [3], the learning-based image compression meth-
ods have achieved great progress. With the optimization of entropy estimation
modules [4, 26] and network structure [8, 11], the learning-based image com-
pression methods have achieved better performance than the traditional image
compression codecs on common metrics, such as PSNR and MS-SSIM [34].

2.2 Video Compression

Video compression is a more challenging problem compared to image com-
pression. There is a long history of progress for hand-designed video compres-
sion methods, and several video coding standards have been proposed, such
as H.264(JM) [35], H.265(HM) [29] and more recently H.266(VTM) [7]. With
the development of video coding standards, the traditional video compression
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methods made significant improvements and provided a strong baseline. Even
they have shown a good performance, these algorithms are limited by the hand-
designed strategy and the difficult to optimize jointly.

Recently, learning-based video compression has become a new direction. Fol-
lowing the traditional video compression framework, Lu et al. proposed the end-
to-end optimized video compression framework DVC [24], in which the neural
networks are used to replace all the critical components in traditional video
compression codec. Then, the exploration direction of existing approaches can
be classified into three categories. One category of approaches focuses on the
motion compensation (alignment) method to improve the accuracy of inter pre-
diction. For example, SSF [1] designed a scale-space flow to replace the bilinear
warping operation. Hu et al. [19] propose the FVC framework, which apply trans-
formation in feature space with deformable convolution [12]. Later Sheng et al.
introduce multi-scale in feature space transformation [28]. Another popular di-
rection is the design of auto-encoder module. Such as Habibian et al. [17] use a
3D spatio-temporal autoencoder network to directly compress multiple frames.
Li et al. [21] use the predicted frame as the input of encoder, decoder, instead of
explicitly computing the residual. The third category extends the learned video
compression to more codec functions, like B-frame [14, 27], utilizing multiple
reference frames [19].

3 Method

3.1 Overview

Let X = {X1,X2, . . . } denote a video sequence, video codecs usually break the
full sequence into groups of pictures (GoP). Due to the accumulative error of
P-frames, in low delay P mode, which is AlphaVC adopted, each group needs to
start with an I-frame and then follow P-frames. In AlphaVC, we propose a new
codecing mode in GoP, including three types of frames. As shown in Fig. 2(a),
the I-frame is only used for the first frame. For other groups, we propose to start
with conditional-I-frame instead of I-frame. The Conditional-I-frame (named cI-
frame), which uses the reference frame as condition of entropy to reduce the
bit-rate, stabilises the reconstructed quality like I-frame, and meanwhile has a
high compression rate. The details of each type of our P-frame and cI-frame are
summarized as follows:

P-Frame First of all, we define the P-Frame in learned video compression as a
class of methods that has the following form on decoder side:

X̂t = Dp(Halign(X̂t−1, m̂t), r̂t) (1)

where Dp(·), Halign(·) denote the method of reconstruction and alignment, m̂t, r̂t
are the quantized latent representation of motion, residual. Note that the quan-
tized latent representation is the features to be encoded after the encoder and
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Fig. 2: Overview of our proposed video compression scheme. (a): Two kinds of
GoP. (b): The framework of P-frame. (c): The framework of cI-frame.

quantization. That is, the reference frame X̂t−1 will participate in and affect the
reconstruction of current frame, which means that the consecutive P-frame will
generate cumulative errors.

In this paper, we use the feature-align based P-frame framework, Fig. 2(b)

sketches our P-frame compression framework. We first transform X̂t−1,Xt into
feature space F̂t−1, Ft. Then motion predictor will generate the predicted mo-
tion Mt and the predicted motion will be compressed by motion compression
model. The predicted feature F̃t is generated by deformable alignment [12] with

the reconstructed motion M̂t and reference feature F̂t−1. Finally, the residual in
feature-based Rt = Ft − F̃t will be compressed by residual compression model.
The reconstructed feature F̂t = R̂t + F̃t is transformed into the current recon-
struct frame X̂t with frame generator.

Both the motion compression model and residual compression model are im-
plemented by auto-encoder structure [4], including an encoder module, decoder
module and the proposed entropy estiamtion module. The newtork structure of
auto-encoder part is the same as FVC [19]. To further reduce redundant informa-
tion, we introduce the temporal and structure prior for the entropy estimation
module in both motion and residual compression models:

Em̂t∼pt
[− log2 qt(m̂t|F̂t−1, m̂t−1)]

Er̂t∼pt
[− log2 qt(r̂t|F̃t, r̂t−1)]

(2)
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the reference feature F̂t−1 and previous quantized motion latent represen-
tation m̂t−1 are structure and temporal priors of m̂t respectively, and the pre-
dicted feature F̃t and previous quantized residual latent representation r̂t−1 are
structure and temporal priors of r̂t respectively.

Conditional-I-Frame (cI-frame) We introduce a new type of frame called
the cI-frame like [22], which can be formulated as:

Auto-Encoder : ŷt = Q(EcI(Xt)), X̂t = DcI(ŷt),

Entropy : R(ŷt|X̂t−1) = Eŷt∼pt
[− log2 qt(ŷt|Halign(X̂t−1, m̂t))],

(3)

where ŷt is the quantized latent representation of Xt, EcI(·), Q(·), DcI(·) denote
the function of cI encoder module, quantization and reconstruction. That is, cI-
frame reduces the inter redundant information through the entropy conditioned
on X̂t−1. For cI-frame, the input of the autoencoder does not use the reference
frames, thus make the reconstructed quality stable. Further, we use cI-frame as
the first frame in the GoP excluding the first GoP, which not only stabilizes the
sequence quality like I-frame, but also improves the compression ratio, thereby
alleviating the problem of accumulated errors.

The framework for cI-frame is shown in Fig. 2(c). The feature extractor,
motion prediction and motion compression part share the same structure with
P-frame framework. F̃t is only used as the prior, the current feature Ft will be
the only input of the encoder.

Furthermore, we propose two novel strategies in both P-frame and cI-frame,
named pixel-to-feature motion prediction (P2F MP) and probability-based en-
tropy skipping method (Skip), to improve the accuracy of inter prediction and
coding efficiency.

3.2 Pixel-to-Feature Motion Prediction

Inter-frame prediction is a critical module to improve the efficiency of inter-frame
coding, since it determines the accuracy of the predicted frame. We propose
pixel-to-feature motion prediction to fully exploit the diversity of feature-based
alignment and the state-of-the-art optical flow network. The illustration is shown
in Fig. 3.

Given the previous reconstructed frame X̂t−1 and the current frame Xt, the
optical flow in pixel space Mpixel

t will be generated by a state-of-the-art optical

flow network [30, 31]. The pixel space motion Mpixel
t is then used to initialize a

motion in feature space Minit
t . Then, we apply the deformable alignment D(·, ·)

to the reference feature F̂t−1 by Minit
t :

F̄t = D(F̂t−1,M
init
t ) (4)

After initial alignment, the motion local refinement network will refine the initial
motion locally according to the initially aligned feature F̄t and the target feature
Ft, and then generate the final predicted motion Mt.

Mt = Refine(F̄t,Ft) +Minit
t (5)
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Fig. 3: Illustration of our proposed pixel-to-feature motion prediction module.

Finally, the predicted motion will be compressed to reconstruct motion M̂t

through motion compression model.
Unlike existing methods, AlphaVC neither learn motion directly from fea-

tures [19] that are difficult to fit through convolutions nor compress the generated
optical flow directly [24]. We follow pixel-to-feature and global-to-local princi-
ples, first generate the feature space motion before coding with optical flow,
then performing further fine-tuning through alignment feedback. Experiments
show that this method greatly improves the accuracy of inter-frame prediction
without affecting the decoding complexity and running time.

3.3 Probability-base Entropy Skipping Method

For a latent representation variable v in learned image or video compression,
we first quantize it with round-based quantization v̂ = [v], and estimate the
probability distribution of v by an entropy estimation module with some priors,
such as hyper [4], context [26], etc. Then v̂ is compressed into the bitstream by
entropy coding like arithmetic coding [18], asymmetric numeral system [13]. In
video compression, due to the introduction of the reference frame, the entropy
of quantized latent representation variables like m̂t, r̂t in P-frame is very small,
especially in low bit-rate. That means the probability distributions of most ele-
ments in the latent variable are concentrated. If it is slightly off-center for such
an element, we will encode it to bitstream with a high cost. In other words, if
we skip these elements without encoding/decoding and replace them with the
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peak of probability distribution, we can save both bit-rate and runtime of en-
tropy coding with little error expectations. Inspired by this idea, we propose an
efficient probability-based entropy skipping method (Skip).

For a latent representation variable v, we define Q as the probability density
set of v estimated by its entropy module. The value which has the maximum
probability density of the i-th element is calculated as:

θi = argmax
θi

qi(θi) (6)

The probability that the element vi is close to θi can be computed by:

qmax
i =

∫ θi+0.5

θi−0.5

qi(x) dx (7)

If the probability qmax
i is high enough, we will not encode/decode the element

to/from the bitstream, and replace the value with θi. After this operation, the
quantized latent representation will become v̂s:

v̂i
s =

{
θi, qmax

i >= τ
[vi] , qmax

i < τ
(8)

where τ is a threshold to determine whether to skip.
In our paper, we use gaussian distribution as the estimated probability den-

sity of all the quantized latent representations. Hence the Eq. 6 and Eq. 7 can
be easily solved as:

θi = µi, q
max
i = erf(

1

2
√
2σi

). (9)

It can be seen that qmax
i is the monotone function of σi, we use σi as the condition

of Eq. 8 to further reduce the computational complexity:

v̂i
s =

{
µi, σi < τσ

[vi] , σi >= τσ
(10)

There are two benefits of Skip. First, it can dynamically reduce the number
of elements that need to be entropy encoded, significantly reducing the serial
CPU runtime. Second, we can better trade-off errors and bit rates for elements
with high determinism, thereby achieving high compression performance.

3.4 Loss Function

Our proposed AlphaVC targets to jointly optimize the rate-distortion (R-D)
cost.

L = R+ λ ·D = (RI
0 + λ ·DI

0) +

T−1∑
t=1

(Rp
t + λ ·Dp

t ) + (RcI
T + λ ·DcI

T ) (11)

where the training GoP size is T, λ controls the trade-off, RI
0 − DI

0, R
p
t − Dp

t

and RcI
T −DcI

T represent the rate-distortion of the 0-th I-frame, the t-th P-frame
and the T-th cI-frame, respectively.
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4 Experiments

4.1 Setup

Training. We train our model on the Vimeo-90k dataset. This dataset consists
of 4278 videos with 89800 independent shots that are different from each other
in content. We randomly crop the frames to patches of size 256× 256, and start
training from scratch. We train the models with Adam optimizer for 60 epochs,
where the batchsize was set to 8 and learning rate was initially set to 1e − 4
and reduced to half for 30 epochs. The skip operation will been enabled during
training. The loss function is the joint rate-distortion loss as shown in Eq. 11,
where the multiplier λ is chosen from (0.07, 0.05, 0.01, 0.005, 0.001, 0.0007) for
the MSE optimization. The the MS-SSIM optimized models are finetuned from
MSE-optimized model with λ = 0.03, 0.01, 0.007, 0.005, 0.001.

Testing. We evaluate our proposed algorithm on the HEVC datasets [6] (Class
B,C,D,E), the UVG datasets [25], and the MCL-JCV datasets [33]. The HEVC
datasets contain 16 videos with different resolution 416 × 240, 832 × 480 and
1920× 1080. The UVG and MCL-JVC datasets contain 7 and 30 1080p videos,
respectively. The GoP size in AlphaVC is set to 20 for all testing datasets.

Camparision. Both IPP and LDP configuration of VTM-10.0 and HM-16.20
are used for comparision. The IPP only references the previous frame, and each
P-frame has the flat QP, which is the same configuration with AlphaVC. The
LDP is the default low-delay P configuration that references multiple previ-
ous frames and has dynamic QP for each P-frame. In addition, state-of-the-art
learning-based video compression methods, i.e., FVC (CVPR’21) [19], DCVC
(NIPS’21) [21], B-EPIC (ICCV’21) [27], VLVC (2021) [14], TCMVC (2021) [28].
Note that, B-EPIC and VLVC don’t belong to IPPP mode, due to the introduc-
tion of B-frame.

4.2 Experiment results

Performance Fig. 4, 5 shows the experimental results on all testing datasets.
It is obvious that AlphaVC achieves the bset performance of all methods. In
terms of MS-SSIM, AlphaVC significantly outperforms all the other methods
over the entire bitrate range and on all the datasets. In terms of PSNR, AlphaVC
significantly outperforms all the learning-based codecs and VTM-IPP, and even
outperforms VTM-LDP in most situations. As mentioned before, VTM-LDP
references multiple previous frames and has dynamic QP for each P-frame. which
is not adopted by AlphaVC.

Table 1 and Table 2 show the BD-rate savings in PSNR and MS-SSIM that
anchored by VTM-IPP. In terms of PSNR, AlphaVC achieves an average 28.2%
bitrate saving compared to VTM-IPP, outperforming all the reported methods,
including the stronger VTM-LDP (23.5% bitrate saving). In the worst case,
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Fig. 4: PSNR based R-D Curves of traditional codecs and state-of-the-art
learning-based codecs on each datasets. The red solid line is AlphaVC. Tradi-
tional codecs are all represented by solid lines, and other learning-based codecs
are represented by dotted lines.

AlphaVC also achieves a BD-rate saving of 14.9% showing a good stability. In
terms of MS-SSIM, learning-based codecs generally have better performances
than traditional codecs, among with AlphaVC performing the best, by saving
an additional 8% bitrate over the best SOTA TCMVC.

Table 1: BD-rate calculated by PSNR with the anchor of VTM-IPP. Red means
more bits (> 3%) required. Green means fewer bits (< −3%) required.

VTM-IPP VTM-LDP HM-IPP HM-LDP SSF FVC DCVC VLVC TCMVC B-EPIC AlphaVC

HEVC B 0 -17.9% 55.2% 24.0% - 75.4% 43.7% 27.1% -6.92% 42.5% -22.5%

HEVC C 0 -23.1% 38.6% 27.1% - 40.9% 42.8% 40.8% 10.2% 35.6% -14.9%

HEVC D 0 -17.9% 35.7% 24.9% - 47.9% 38.6% 30.5% -6.61% 117.% -29.0%

UVG 0 -31.9% 18.5% 1.99% 57.7% 28.4% 24.0% 2.15% -17.3% 3.78% -41.7%

MCL-JCV 0 -26.6% 26.3% 15.2% 50.6% 29.3% 43.8% - 2.32% 50.6% -32.9%

Avg 0 -23.5% 35.6% 19.7% 54.2% 44.4% 38.6% 25.1% -3.66% 49.9% -28.2%

Complexity The MAC(Multiply Accumulate) of the P-frame at the decoding
side is about 1.13M/pixel, and the cI-frame is about 0.98M/pixel. We use arith-
metic coding for the complete entropy encoding and decoding process, and 1080p
videos to evaluate the runtime. The runtime of the encoding side includes model
inference, data transmission from GPU to CPU and entropy encoding, and the
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Fig. 5: MS-SSIM based R-D Curves.

Table 2: BD-rate calculated by MS-SSIM with the anchor of VTM-PVC-IPP. Red
means more bits (> 3%) required. Green means fewer bits (< −3%) required.

VTM-IPP VTM-LDP HM-IPP HM-LDP SSF FVC DCVC VLVC TCMVC B-EPIC AlphaVC

HEVC B 0 -20.5% 54.6% 17.4% - -21.3% -16.0% -42.5% -53.5% -7.1% -61.6%

HEVC C 0 -20.7% 53.6% 12.8% - -22.2% -12.8% -41.6% -47.6% -15.4% -58.9%

HEVC D 0 -27.2% 39.3% -1.5% - -34.7% -33.0% -49.6% -60.7% -21.5% -67.2%

UVG 0 -26.7% 56.3% 20.2% 33.9% 11.5% 10.9% -12.9% -22.0% -1.63% -32.9%

MCL-JCV 0 -26.0% 49.6% 14.5% -4.5% -18.8% -17.9% - -38.8% -19.9% -40.5%

Avg 0 -24.2% 49.9% 11.5% 14.7% -17.1% -13.7% -36.6% -44.5% -13.1% -52.2%

runtime of the decoding side includes entropy decoding, data transmission and
model inference. The comparison results are shown in Table 3, in which run-
ning platform of AlphaVC is Intel(R) Xeon(R) Gold 6278C CPU and NVIDIA
V100 GPU. The encoding and decoding times of AlphaVC on a 1080p frame
average about 715ms and 379ms. The encoding time is about 1000x faster than
VTM, and the decoding time is similar to VTM (1.69x). Even though AlphaVC
uses more parameters than TCMVC, it is still faster. The main reason is the
proposed probability-based skip entropy technique, which significantly reduces
the running time on CPU. In addition, we can find that the cI-frame is slower
than P-frame although the cI-frame has less complexity. This is also because the
bit-rate in the cI-frame is higher, and the number of skipping elements in the
cI-frame is fewer.
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Table 3: Complexity on 1080p video. We compare our AlphaVC including cI-
Frame and p-Frame with traditional codecs and TCMVC. The time ratio is
calculated with the anchor of VTM.

Method Params. Enc-T (s) Dec-T (s) Enc-T ratio Dec-T ratio

VTM-10.0-IPP - 661.9 0.224 1.0000 1.0000

HM-16.40-IPP - 26.47 0.140 0.0400 0.6250

TCMVC 10.7M 0.827 0.472 0.0012 2.1071

AlphaVC 63.7M 0.715 0.379 0.0011 1.6920

AlphaVC-cI 29.9M 0.733 0.580 0.0011 2.5893

AlphaVC-P 33.8M 0.685 0.365 0.0010 1.6295

4.3 Ablation Study and Analysis

Frame Analysis We use three types of frame in AlphaVC:I-frame, cI-frame
and P-frame. To justify this approach and evaluate each type of frame, we train
two additional models AlphaVC-P and AlphaVC-cI. AlphaVC-P only includes
I-frame and P-frame, and the GoP size is the same with AlphaVC in the test
phase. AlphaVC-cI only includes I-frame and cI-frame, and there is no group in
AlphaVC-cI, I-frame is only used in the first frame and all subsequent frames are
cI-frames. The R-D performance is shown in Fig. 6(a), AlphaVC-P achieves com-
parable performance with VTM IPP, and AlphaVC-cI only achieves comparable
performance with HM IPP. The reason may be that cI-frame utilizes reference
frames in a more implicityly way: as the condition of entropy. The reason is that,
although the cI-frame is not good enough, it is stable and has no accumulated
error as shown in Fig. 6(b). By combining these two types of frame, AlphaVC
achieves better R-D performance for the following two reasons:

1. The accumulated error of P-frame in AlphaVC is smaller than the P-frame
in AlphaVC-P. (see in Fig. 6(b)).

2. The performance of cI-frame is much better than I-frame (see in Fig. 6,
similar distortion with smaller rate).

Effectiveness of Different Components. We demonstrate the effectiveness
of our proposed components with AlphaVC-P as the anchor. We gradually re-
move the P2F MP, Skip in m̂ and Skip in r̂ from AlphaVC-P. Note that, without
P2F MP, the current feature and reference feature will be fed to the motion com-
pression module directly. The BD-Rate savings against AlphaVC-P are presented
in Table 4(b). Moreover, a more intuitive analysis for the proposed methods is
shown in Fig. 7.

As shown in Table 4(b), P2FMP brings 10.4% BD-rate saving. From Fig. 7(b),
we can see that the compressed motion with P2F MP is more accurate and with
smaller entropy.
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(a) (b)

Fig. 6: Comparison with each type of frame in AlphaVC. AlphaVC-P only include
P-frame and I-frame, the GoP size is 20 samed as AlphaVC. AlphaVC-cI only
include cI-frame and I-frame, only the first frame uses the I-frame. (a): R-D
performance of AlphaVC, AlphaVC-P and AlphaVC-cI under PSNR on HEVC
class B dataset. (b): Example of performance comparison for each type of frame,
the tested sequence is BQTerrace in class B. The solid line indicates the curve
of distortion, the dashed line indicates the curve of rate.

Table 4: Effectiveness of our different components. The BD-rate values are com-
puted under PSNR on HEVC class B dataset.

(a)

I-frame ✓ ✓ ✓
P-frame ✓ ✓
cI-frame ✓ ✓

BD-Rate 0% 21.4% 92.7%

(b)

P2F MP ✓
Skip in M. ✓ ✓
Skip in R. ✓ ✓ ✓

BD-Rate 0% 10.4% 18.6% 37.5%

To analyze Skip, we first explore the relationship between the replacement
error, and the variance of Gaussian distribution as shown in Fig. 7(c). Notice
that the replacement error is highly correlated with variance, and elements with
smaller variance have small errors. Therefore, skipping the entropy coding of
these elements will not cause any loss, and may even improve performance. Due
to the smoothness of motion information, the Skip ratio of motion latents is
as high as 90% at each quality level as shown in Fig. 7(d), The Skip ratio of
residual latents gradually increases (60% – 90%) with the decrease of quality.
With the number of skipped elements increases, we can clearly see in Fig. 7(d)
that the runtime of entropy coding on CPU is greatly reduced. In addition, as
shown in Table 4(b), the probability-based skip entropy method can also improve
performance obviously.



14 Y. Shi et al.

(b) Compressed Motion

Quality

(a) Original Image

(c) Visualization of error and variance (d) Skip Ratio and Dec. Time

HEVC classB

Fig. 7: Analysis of methods. (a): Two adjacent original frames of HEVC classB
BasketballDrive. (b): Left/Right: The compressed motion wo/w our motion pre-
diction module. (c): Visualization of variance of gaussian distortion σ and error
after replacement. (d): Example result of the average skip ratio and arithmetic
decoding time at 4 different bit rates, the ratio is calculated by skipped elements
/ total elements. The motion and residual latents are shown in the red and yel-
low curve, respectively. The solid and dotted curves represent ratio and time,
respectively. The number on curves indicates bit-rate(BPP).

5 Conclusion

This paper proposed a high-performance and efficient learned video compression
approach named AlphaVC. Specifically, we designed a new coding mode includ-
ing three types of frame: I-frame, P-frame, and cI-frame, to reduce the bit rate
of I-frame and mitigate the accumulative error. We then proposed two efficient
techniques: P2F MP for improving the accuracy of inter-frame prediction at the
encoder side, and Skip for reducing entropy and speeding up runtime. Experi-
mental results show that AlphaVC outperforms H.266/VVC in terms of PSNR
by 28% under the same configuration, meanwhile AlphaVC has the comparable
decoding time compared with VTM. To the best of our knowledge, AlphaVC
is the first learned video compression scheme achieving such a milestone result
that outperforms VTM-IPP over the entire bitrate range and on all common
test datasets.

We believe that our proposed AlphaVC provides some novel and useful tech-
niques that can help researcheres to further develop the next generation video
codecs with more powerful compression.
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