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Abstract. In recent years, with the development of deep neural net-
works, end-to-end optimized image compression has made significant
progress and exceeded the classic methods in terms of rate-distortion
performance. However, most learning-based image compression methods
are unlabeled and do not consider image semantics or content when op-
timizing the model. In fact, human eyes have different sensitivities to
different content, so the image content also needs to be considered. In
this paper, we propose a content-oriented image compression method,
which handles different kinds of image contents with different strategies.
Extensive experiments show that the proposed method achieves competi-
tive subjective results compared with state-of-the-art end-to-end learned
image compression methods or classic methods.
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1 Introduction

An uncompressed image usually contains tremendous data that is expensive to
store or transmit. Therefore, image compression, or image codec, which aims to
reduce redundant information in image data for efficient storage and transmis-
sion, is an essential part of real-world applications. The frameworks of traditional
image compression methods such as JPEG [25], JPEG2000 [24] and BPG [6] are
sophistically designed, which usually include modules of prediction, transforma-
tion, quantization, and entropy coding. However, each module in the frameworks
is optimized separately, making it hard to achieve global optimality.

In recent years, with the development of deep learning, end-to-end (E2E)
learned image compression methods are proposed. Compared with traditional
codecs, the biggest advantage of E2E methods is that the whole framework
can be jointly optimized, making it has a greater protential in compression ef-
ficiency. Impressively, it takes only five years for E2E image compression to
outpace the traditional methods that have developed for 30 years in terms of
rate-distortion performance. Mainstream E2E image compression methods rely
on the variational autoencoder(VAE) [3] [4] [15] [21] or generative adversarial
network (GAN) [1] [2] [20] [22] to compress images, and various loss metrics
such as Mean Squared Error (MSE), Multi-Scale Structural Similarity Index
(MS-SSIM) [27], Learned Perceptual Image Patch Similarity (LPIPS) [28], etc.
are used to optimize the model. Most existing methods optimized all regions of
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Fig. 1. Reconstructed image with different methods at a similar bitrate.

the image in the same way, and have different distortions at low bit rates. For ex-
ample, Minnen [21] used MSE metric to train a VAE image compression network.
In this optimization, structural information such as text and lines are correctly
perserved, but the reconstructed image will become too blurry. Mentzer [20] tried
to improve the image quality by introducing GAN and LPIPS. In this optimiza-
tion, the informative details are well preserved, but the structural information
is distorted, such as distorted text, warped face (demonstrate in the left part of
Fig.1).

Image content plays an important role in human perception, and human
eyes have different sensitivities to different content. However, the influence of
image content has been largely ignored in learning-based image compression.
Different regions of the images have different properties, so the training strat-
egy should also be different. For example, pixels in flat or texture regions are
strongly correlated, and it is better to use loss metrics with a large receptive
field. In contrast, pixels in edge or structure reagions have little correlation with
their neighborhoods, and it is better to use loss metrics with a small receptive
field. The usage of paintbrushes is a good analogy to describe it, large paint-
brushes are usually used to make large textures and to lay large color blocks,
while small paintbrushes are usually used to draw fine lines and color dots. Be-
sides, for some special regions, like small face, it is needed to use more strict
constraints to avoid deformation. As a result, to address the problems above,
we propose a content-oriented image compression scheme, which is suitable for
most of the existing frameworks. Specifically, in the training stage, we divide
the image into different regions, and use different loss metrics according to their
characteristics.

To the best of our knowledge, this is the first content-oriented image compres-
sion method that improves the visual perceptual quality without changing the
architecture. An instance is shown in Fig. 1, which demonstrates the superiority
of our method. The contributions of this paper are summarized as follows:
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1. We propose a content-oriented E2E image compression scheme, in which we
use different loss metrics in different regions. The region masks are used only
in the training stage, and no extra information is needed in the encoding and
decoding stage.

2. To evaluate the scheme, we design a GAN-based architecture as an instance
to show the effectiveness. Several classic and E2E methods are used for
comparison, and our method shows the best performance.

2 Related Work

2.1 Loss metrics

MAE/MSE Loss MSE and the mean absolute error (MAE) are two of the
most commonly used loss metrics in image compression. MAE and MSE metrics
assume pixel-wise independence, and constrints the accuracy of the correspond-
ing pixels. However, the main drawback of MSE loss metric mostly yields an
oversmoothed reconstruction, which results in a lack of high-frequency details in
the edges and textures. Given an image x and its reconstructed version x̃, the
MAE and MSE loss are computed by:

Lmae = E∥x− x̃∥1
Lmse = E∥x− x̃∥22

(1)

Laplacian Loss Laplacian is a differential operator given by the divergence
of the gradient, which is always used to detect the high-frenquency component
of images. The Laplacian loss is defined as the mean-squared distance between
their Laplacians:

Llap = E∥L (x)− L (x̃) ∥22 (2)

Where Llap is the Laplacian loss value. As shown in Eq.2, it is also a point-to-
point loss metric, which constraints the Laplacians of the corresponding location.
By doing this, the high-frenquency component of the area is preserved.

LPIPS Loss LPIPS is a state-of-the-art perceptual metric proposed by Zhang
[28]. He uses architectures trained for classification as feature extractors, and
leverages the power of the features to judge the similarity between the recon-
structed image and the original one, which is computed by:

Llpips =
∑
k

τk
(
fk (x)− fk (x̃)

)
(3)

where f denotes the feature extractor, and τk computes the score of features
from the k-th layer of the architecture. The LPIPS value is the averaged score
of all layers. It is a loss metric with a large receptive field, which constraints the
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distribution of corresponding location. The LPIPS metrics makes images more
semantically similar, which is more consistent with human perception. However,
the absence of point to point constraints may result in geometric distortion.

GAN Loss GAN is widely used for perceptual image compression. By taking
advantage of adversarial training, GAN-based architectures can produce more
photo-realistic images. It contains two rivaling networks: the generator G is
used to generate an image x̃ = G(ŷ) that is consistent with the input image
distribution px, and the discriminator D is used to predict if the input image is an
image generated by G. The goal of GAN for G is to produce images that are real
enough to fool D. In the procedure of training, the image produced by G becomes
more and more authentic, and D becomes more and more discriminating, finally
reaching a balance.

2.2 learned image compression methods

Many E2E image compression methods take advantage of VAE as its backbone,
which usually consists of four components: the encoder, the quantizer, the en-
tropy module and the decoder. The encoder is used to encode the input image x
into a latent representation y, which is then quantized to ŷ by the quantizer. The
entropy module, which is used to estimate the distribution of ŷ, plays an impor-
tant role in minimizing the rate-distortion cost. Finally, the quantified feature ŷ
is transformed to reconstruct the image x̃. The framework is directly optimized
for the rate-distortion trade-off, that is: LRD = R + λd. Where R represents
the bitrate which is lower-bounded by the entropy of the discrete probability
distribution of ŷ, d is the reconstruction distortion, λ controls the trade-off. The
framework is first proposed by Ballé in reference [3], where they introduced the
widely used generalized divisive normalization (GDN) transform. In their fol-
lowing works, they proposed the hyper prior [4] to better exploit the probability
distribution of the latent feature. And in [21] and [15], spacial context structure
is proposed to improve the performance of the entropy module.

On the basis of above works, some researchers proposed to use GAN and
some perceptual metrics (e.g. LPIPS) to improve the visual perceptual quality.
Rippel [22] first introduced the effectiveness of GAN in generating perceptual
friendly images at an extremely low bitrate. In the following works, Agusts-
son [1], Akutsu [2], Dash [10] also make use of GAN loss to improve the percep-
tual quality of reconstruction images. According to rate-distortion-perception
theory presented in [5], Mentzer combines MSE (Mean squared error), LPIPS
and GAN loss to generate images of competitive perceptual quality [20]. In this
paper, we also use a GAN-based architecture, and what distinguishes us from
previous works is that we take the image contents into consideration, and adopt
different strategies on different target regions.

Another related topic of the work is content-related image compression. Li
introduced a content-weighted importance map to guide the allocation of lo-
cal bit rate [17]. Similarly, Cai proposed a CNN based ROI image compression
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method to allocate more bits to the ROI areas [7]. Besides, Zhang proposed an
attention-guided dual-layer image compression, which employs a CNN module
to predict those pixels on and near a saliency sketch within ROI that are critical
to perceptual quality [29]. However, most of the existing content-related works
need to change the architecture and allocate more bits in important fields, thus
increasing the network complexity and reducing the compression efficiency. Dif-
ferent from above, we proposed a content-oriented image compression method
by adopting different loss strategies on different areas. The advantage is that our
scheme can be applied in most of the previous works without changing the ar-
chitecture. Besides, the image content masks are learned by the network during
the training, so no extra information is needed when encoding or decoding an
image.

3 Method

3.1 Framework of our method
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Fig. 2. Framework of our method.

From Section 2.1, it is easy to deduce that different loss functions are suitable
for different image contents. However, existing learned image compression always
optimizes the whole image with the same loss function. In existing content-
related image compression methods, important maps [17], ROI masks [7], or
other extra information need to be encoded as part of the codestream. One
the one hand, such methods require changing the encoder-decoder structure to
make the architecture more complex by adding a special module to extract the
important maps or ROI masks, on the other hand, they also increase the extra
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bits that inevitably degrade the coding efficiency. This problem can be overcome
if the architecture is ‘clever’ enough to distinguish different image contents and
employ different compression strategies. The whole framework of our method
is shown in Fig.2. The mask information is only used to select different loss
functions during the training phase and not needed in the inference phase.

As shown in Fig.2, E2E image compression is transformed from unlabeled to
labeled learning. The choice of the loss functions depends on the classification of
image regions. According to the previous analysis, we divide the image into three
image regions, namely texture region, structure region, and small face region.

Structure Region Structure regions usually have strong gradients and have
little statistical correlation with very close neighborhoods due to the abrupt
changes in pixels. And loss function with large receptive field will introduce
additional noise, which is not acceptable for a precise edge reconstruction. The
human eye is sensitive to the sharpness and the pixel-wise correctness of the
structure, so a point-wise loss function is more suitable. However, MSE will
lead to a blurred reconstruction, affecting the subjective visual perception. As
shown in Fig.3 [19], considering a simple 1-dimensional case. If the model is only
optimized in image space by the L1 or MSE loss, we usually get a reconstructed
sequence as Fig.3(b) given an input testing sequence whose ground-truth is a
sharp edge as Fig.3(a). The model fails to recover sharp edges for the reason that
the model tends to give a statistical average. If a second-order gradient constraint
is added to the optimization objective as Fig.3(f), the probability of recovering
Fig.3(c) is increased significantly. As a results, we choose the Laplacian loss in
structure region. The structure loss function is as follows:

Lstru = Mstru ◦ Llap (4)

where Mstru denotes the mask of the structure region, Llap is computed with
Eq.2. We use Laplacian edge detector to generate the Mstru, which will be in-
troduced in Section 4.1.

(a) Input (b) Blurry Reconstruction (c) Sharp Reconstruction

(d) Input Gradient (e) Blurry Gradient (f) Sharp Gradient

Fig. 3. An illumination of a simple 1-D case. The first row shows the pixel sequences
and the second row shows their corresponding gradients.
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Texture Region Unlike structure regions, texture regions always have more
details and domain pixels are highly correlated. It is difficult for the human eyes
to perceive pixel-by-pixel correctness, and people are more concerned about the
distribution of the texture. Existing perceptual optimization based methods [20]
have achieved very compelling texture reconstruction results. Therefore, we use
the perceptual loss in this region. In our work, the perceptual loss are constituted
of three part: MAE loss, LPIPS loss, and GAN loss. The formulation can be
denoted by:

Lper = Mtex ◦ (α · Lmae + β · LLPIPS + δ · LGAN ) (5)

where Mtex denotes the mask of the texture region, Lmae, LLPIPS are computed
with Eqs.1, 3, LGAN will be introduced in Section 3.2. In our work, the VGG [23]
network is chosen as the backbone to compute the LPIPS loss.

Small Face Region In our framework, the facial regions will be classified as
texture regions and optimised with perceptual loss if not intervened. In this case,
larger faces can be well reconstructed, but small faces may be warped, as shown
on the left side of Fig.1. Therefore, we adopt a different loss function for regions
of the small faces. Generally, people are very sensitive to the correctness of the
face structure, for which an accurate reconstruction is necessary. Therefore, we
use a stricter constraint loss, the MSE loss, for the facial image reconstruction.

Lsface = Msface ◦ Lmse (6)

where the Msface denotes the mask of the small face regions, and Lmse is
computed with Eq.1. We use the well-known YOLO-face to detect the faces in
the image, and Lsface is only adopted to small faces. The bitrate of the quan-
tized latent reprensentation ŷ is estimated by the entropy module denoted by P,
R(ŷ) = − log(P (ŷ)). Finally, the loss function of the whole image is summaried
as:

Ltotal = ηR(ŷ) + ϵLstru + Lper + γLsface (7)

where η, ϵ and γ are weights of corresponding loss metrics. Because people
usually pay more attention to faces of the images, we intentionally allocate more
bits on small faces by using a larger γ. Note that the masks are binary-valued
and mutually exclusive. And the priority of the masks is different, specifically,
from high to low: the facial mask, the structure mask and the texture mask. In
other words, the structure mask doesn’t cover the facial areas, and the texture
mask doesn’t cover the facial and structure areas.

3.2 Architecture

To prove the effectiveness of our method, we design an E2E image compression
architecture, as shown in Fig.4. It consists of four parts: the encoder E, the
decoder/generator G, the entropy module P, and the discriminator D.
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Fig. 4. The architecture of our method. Conv192 − 5 × 5 is a convolution with 192
output channels, with 5×5 filters. DeConv is a deconvolution operation. s2 means the
stride of this convolution or deconvolution is 2. Ave means average pooling. GDN or
ReLU is used to increase the non-linearity.

Autoencoder For the encoder and generator/decoder, GDN [3] is used to nor-
malize the intermediate feature and also play a role of non-linearity element.
Besides, to capture the global dependencies between features, we introduced
the attention module (the residual non-local attention block, RNAB) [30] inte-
grated into the architecture. It is well-known that deconvolution operation, or
transposed convolution always generates checkerboard artifacts on the recon-
structed image. The main reason is, the up-sampled feature map generated by
deconvolution can be considered as the result of periodical shuffling of multiple
intermediate feature maps computed from the input feature map by independent
convolutions [12]. As a result, adjacent pixels on the output feature map are not
directly related, resulting in checkerboard artifacts. To alleviate this issue, we
add an extra average pooling layer after every deconvolution layer to strengthen
the association between adjacent pixels.

Entropy model We adopt the context-based model [21] to extract side infor-
mation z, which is used to model the distribution of latent representation ŷ.
And uniform noise U(-1/2,1/2) is used to simulate quantization in the hyper-
encoder and when estimating p(ŷ|z). The distribution of ŷ is modeled with an
asymmetric Gaussian entropy model [9], which can be denoted by:

pŷ|ẑ(ŷ | ẑ) ∼ N
(
µ, σ2

l , σ
2
r

)
(8)

where µ represent the mean of the latent representation, σ2
l and σ2

r represent
the estimated left-scale and right-scale parameter, respectively. The asymmetric
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Gaussian model has stronger representation ability when the entropy estimation
do not obey the Gaussian distribution.

Discriminator In our framework, adversarial training is adopted to improve
the perceptual quality of the reconstructed images. Instead of a standard dis-
criminator, we borrow the relativistic average discriminator [13] used in [26],
which tries to predict the probability that a groundtruth image x is relatively
more realistic than a generated one x̃, on average. The loss is divided into two
parts, the generator loss LRa

D , and the discriminator loss LRa
G :

LRa
D = −Ex [log (DRa (x, x̃))]− Ex̃ [log (1−DRa (x̃, x))]

LRa
G = −Ex [log (1−DRa (x, x̃))]− Ex̃ [log (DRa (x̃, x))]

(9)

where DRa (x, x̃) = σ (C (x)− Ex̃ [C (x̃)]). C (x) and C (x̃) are the the non-
transformed discriminator ouput. σ is the sigmoid function, and Ex[·] computes
the average output. Moreover, the PatchGAN discriminator [16], which has been
proven to improve the quality of the generated images, is also utilized in our
architecture. The PatchGAN has fewer parameters. And it not only preserves
more texture but can also be applied to images of arbitrary sizes. The detailed
architecture of our discriminator is shown in Fig.5.

Fig. 5. The architecture of discriminator. Same notation is used as in Fig.4.

3.3 Implementation of masked perceptual loss

Usuallym, Adding a pixel-level mask to MSE or MAE is easy with simple point-
wise multiplication. But it is a little harder to used on LPIPS or GAN losses,
because these two loss functions compute the feature losses and cannot corre-
spond to mask pixel-to-pixel. In this section, we propose a method called ‘real
value replacement’ to solve the problem.

Consider the mask Mtex, the original image x, and the reconstructed image
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x̃, we replace the value of the mask part of x̃ with the corresponding value of x
to get the replaced reconstructed image x̃′:

x̃′ = (1−Mtex) ◦ x+Mtex ◦ x̃ (10)

Then calculate the loss function directly with x and x̃′ to estimate the masked
loss:

Mtex ◦ LLPIPS (x, x̃) ≈ LLPIPS (x, x̃′)

Mtex ◦ LGAN (x, x̃) ≈ LGAN (x, x̃′)
(11)

4 Experiment

4.1 Training Details

Due to the adoption of face loss, a large number of face images are required for
training. For this purpose, we use the well-known MSCOCO dataset [18] as our
training set, and Kodak dataset [14] as our testing set. It is notoriously hard to
train GANs for image generation, so the training procedure is divided into two
stages. In the first stage, we only use the MSE as the distortion loss to guide
the optimization at the pixel level reconstruction. The optimization target in the
first stage is to minimize LRD = ηR + Lmse. Using the first stage result as the
pre-trained model, we can train the perceptual optimized model with the loss
function Eq.7 mentioned in section 3.2 in the second stage. During the training
phase, we randomly crop the images into patches of size 256 × 256 and set the
batch size to 8. The initial learning rate is set to 0.0001 and halved at 160k and
500k iteration. We use kaiming initialization [11] to initialize all our models. The
weights of the loss are set: α = 0.01, β = 1, γ = 0.2, δ = 0.0005, and ϵ = 0.3.
We only modify η for different target bit-rates.

In order to use different loss metrics on different regions of the images, the
masks of different content regions are required. In our experiment, the faces in the
images are detected using the well-known YOLO-face [8]. Then the coordinate
information of the faces is stored in an XML file, which is used to generate the
face masks in the training phase. By doing this, we can save the face detection
time during training the model. For structure region masks, due to the low
complexity of edge detection, we do not generate masks in advance, but directly
use Laplacian edge detectors to detect structure regions during training.

4.2 Ablation Study

Ablation on the loss metric In order to show the effectiveness of the pro-
posed, we conduct several comparative experiments as follows.

– Case 1, the model is optimized only with MSE loss. (MSE)
– Case 2, the model is optimized with MAE, LPIPS and GAN loss. (Percep-

tual)
– Case 3, the model is optimized with MAE, LPIPS, GAN and Laplacian loss.

(Perceptual + Lap)
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MSE

 bpp=0.191

Perceptual + Lap 

bpp=0.205

Perceptual+Lap& face 

bpp=0.195
Perceptual

bpp=0.194
Original

Fig. 6. Comparison of different loss strategies.

(a) with HIFIC discriminator (b) with our discriminator

Fig. 7. Comparison of the discriminators.

(a) without average pooling (b) with average pooling

Fig. 8. Ablation on the average pooling.

– Case 4, the model is optimized with MAE, LPIPS, GAN, Laplacian and face
loss. (Perceptual + Lap & face)

Take the image kodim14 an example, the visual comparison of different cases is
shown in Fig.6. All of these cases are compressed at a similar bitrate, around
0.2 bpp. Overall, it can be clearly observed that the reconstructed image in case
5 has high-fidelity facial features, clear and correct text, informatively detailed
backgrounds and an overall harmonious visual quality. Specifically, in case 1, the
faces and water waves are too blurred, which attributes to the property of the
MSE loss function. In case 2, with the help of additional loss functions GAN
and LPIPS, the informative details of water waves are restored, but the facial
features and text are severely warped. In case 3, with the help of additional edge
loss, not only the informative details of water waves are restored, but the text
distortion phenomenon also disappears. However, the facial distortion remains.
Until all the losses are added, in case 5, the best visual effect is achieve in all
the areas. Through the ablation study, we can draw two conclusions: (1) the
architecture proposed in 3.3 is able to distinguish different image contents; (2)
adopting appropriate loss function for different image content helps improve the
visual quality of reconstructed images.
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BPG:bpp=0.320 HIFIC:bpp=0.220 OUR:bpp=0.221AGDIC:bpp=0.322Original

BPG:bpp=0.129 HIFIC:bpp=0.124 OUR:bpp=0.119AGDIC:bpp=0.137Original

Fig. 9. Compressed results of kodim18 using different methods.

Ablation on the architecture In order to get better result, we choose the
better components in our architecture, such as the asymmetric Gaussian entropy
model, the relatively average discriminator,and the average pooling. We have
done relevant experiments to demonstrate the effectiveness of our architecture.
The results show that with the help of the asymmetric Gaussian model, we
achieve about 0.68% BD-rate reduction compared with the general Gaussian
entropy model. We also tested the effectiveness of our disriminator, and the
result shown in Fig.7 proves that our discriminator can preserve more details
than that of HIFIC. Besides, Fig.8 shows that the average polling can alleviate
the checkerboard artifacts.

4.3 Visual Results

To show the advantage of our method, we compare our method (named COLIC)
with BPG, Asymmetric Gained Deep Image Compression (AGDIC) optimized
with MSE [9] and High-Fidelity Generative Image Compression (HIFIC, SOTA
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perceptual optimized method) [20].Since BPG and AGDIC are not perceptual-
optimized, we select relatively higher bitrates for them. The visual results are
shown in Fig.9, in which the cropped blocks highlight the reconstruction of cer-
tain regions, such as textures, texts, and small faces. As can be seen from Fig.9,
although BPG and AGDIC can maintain the correct facial structure and achieve
relatively better results in text area, the texture results are over-smoothed. As
shown in the third row, the background generated by BPG and AGDIP is too
blurry. On the contrary, although HIFIC can reconstruct the informative details,
it will lead to the distortion of face and text. As shown in the second and fifth
rows, the face and text generated by HIFIC are overwarpped. Compared to these
results, it is clear that our proposed COLIC achieves the best visual effects. It
handles all these situations better, recovering more texture detail, correct small
face and text structure.

More examples of comparison with HIFIC are shown in Fig.10. Compared
with HIFIC, COLIC can not only recover similar informative texture regions,
such as the spray, but also better structured regions such as lines, textures and
small faces. In a word, COLIC can achieve better visual effects.

HIFIC:bpp=0.235 OUR:bpp=0.232Original

HIFIC:bpp=0.162 OUR:bpp=0.162Original

HIFIC:bpp=0.220 OUR:bpp=0.221Original

Fig. 10. Compressed results of kodim18 using different methods.
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Fig. 11. Rate-distortion and -perception curves on Kodak. Arrows indicate whether
lower is better (↓), or higher is better (↑).

4.4 Statistics result

In this section, we use metrics such as PSNR, SSIM, and FID to quantify our
results. PSNR and SSIM are widely used in various digital image evaluations,
which compute the average pixel-wise distance and structural similarity between
the two images. Unlike PSNR, SSIM, which measure the similarity between
individual images pairs, FID assesses the similarity between the distribution of
the reference images and the generated/distorted images. FID is a good metric
for evaluating the subjective results and is widely used for super-resolution or
generative tasks.

The R-D curves of COLIC, BPG, AGDIC and HIFIC are shown in Fig.11.
Compared with BPG and AGDIC, as expected, COLIC and HIFIC dominate
in perceptual metric FID, but relatively poor on objective metrics PSNR and
SSIM, which can be explained by the rate-distortion-perception theory [5] that
they sacrifice some objective performance to improve the perceptual quality. In
order to improve the visual quality, we sacrifice some of the objective metrics.
Compared with HIFIC, COLIC achieves better results on both objective and
perceptual metrics. It attributes to the better optimization loss that imposes
the correct constraints on the structure region, the better network structure
that with better reconstruction ability, and better training strategy.

5 Conclusion

In this work, we propose a content-oriented image compression scheme, which can
be used in most existing methods. We suggest that different loss metrics should
be used on different image contents according to their characteristics. And a
GAN-based architecture is designed to prove the effectiveness of our scheme.
Experiments clearly show the superiority of our method on visual quality as
well as different metrics. In fact, the effectiveness of this method demostrates
that existing encoders and decoders are ’smart’ enough to distinguish different
image regions and employ different reconstruction strategies with the guidance of
different training loss. Therefore, human perceptual priors can be better utilized
through supervised training methods to obtain better subjective results.
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