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Abstract. Unsupervised few-shot learning aims to learn the inductive
bias from unlabeled dataset for solving the novel few-shot tasks. The ex-
isting unsupervised few-shot learning models and the contrastive learn-
ing models follow a unified paradigm. Therefore, we conduct empirical
study under this paradigm and find that pairwise contrast, meta losses
and large batch size are the important design factors. This results in
our CPN (Contrastive Prototypical Network) model, which combines
the prototypical loss with pairwise contrast and outperforms the existing
models from this paradigm with modestly large batch size. Furthermore,
the one-hot prediction target in CPN could lead to learning the sample-
specific information. To this end, we propose Wasserstein Confidence
Penalty which can impose appropriate penalty on overconfident predic-
tions based on the semantic relationships among pseudo classes. Our full
model, CPNWCP (Contrastive Prototypical Network with Wasserstein
Confidence Penalty), achieves state-of-the-art performance on miniIma-
geNet and tieredImageNet under unsupervised setting. Our code is avail-
able at https://github.com/Haoqing-Wang/CPNWCP.

Keywords: Unsupervised few-shot learning · Contrastive learning · Con-
fidence penalty · Wasserstein distance

1 Introduction

Humans have the ability to learn from limited labeled data, yet it is still a chal-
lenge for modern machine learning systems. Few-shot learning [15, 40, 27, 53, 44]
is proposed to imitate this ability and has attracted significant attention from
the machine learning community recently. Before solving novel few-shot tasks,
most models typically learn task-shared inductive bias from sufficient labeled
data (base dataset). However, obtaining sufficient labeled data for certain do-
mains may be difficult or even impossible in practice, such as satellite imagery
and skin diseases. When only the unlabeled data from the same domain as the
novel tasks is available, we can learn the inductive bias in the unsupervised
manner, which is formalized as the unsupervised few-shot learning.

Existing unsupervised few-shot learning models focus on constructing pseudo
training tasks from unlabeled dataset with clustering based methods [21, 23] or
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data augmentation based methods [25, 54, 26]. The latter ones usually achieve
better performance, which randomly select a batch of samples from the unlabeled
dataset and generate in-class samples for each one to form the support and query
set via hand-craft or learnable data augmentations [25, 54, 26]. The synthetic
pseudo tasks are used to train the meta-learning models [40, 27, 43].

Concurrently, contrastive learning [9, 16, 51, 11] achieves outstanding success
in the field of self-supervised representation learning and can be directly used
in unsupervised few-shot learning. These models also randomly select a batch
of samples from the unlabeled dataset and generate different views for each one
via well-designed data augmentations. The key motivation is to push the views
of the same sample (positive pair) close to each other and the views of different
samples (negative pair) away from each other in embedding space. To this end,
they propose different contrastive losses, such as a lower bound on the mutual
information [9, 18], the asymmetric similarity loss [16] or the difference between
the cross-correlation matrix and the identity matrix [51].

If we consider the contrastive loss as a meta-learning objective where the aug-
mented views form a training sub-task, the contrastive learning models are essen-
tially the same as the data augmentation based unsupervised few-shot learning
models. Therefore, we take a closer look at this paradigm and conduct empirical
study to find the key design factors, as shown in Section 4.3. Concretely, the
contrastive learning models typically can achieve better performance than unsu-
pervised few-shot learning models, while we find their superiority actually comes
from the larger batch size and pairwise contrast. Although the key motivation
is appropriate, the specific contrastive losses (e.g., a lower bound on the mu-
tual information) are not as suitable for few-shot learning as some meta losses,
which limits its performance. Therefore, we combine the prototypical loss [40]
with pairwise contrast and get CPN (Contrastive Prototypical Network). With
the modestly large batch size, CPN outperforms both the unsupervised few-shot
learning models and the contrastive learning models.

Furthermore, some negative pairs could be semantically similar or even be-
long to the same semantic class in CPN. This problem is also referred to as “class
collision” [3] or “sampling bias” [12, 48] in contrastive learning, as shown in Fig.
1(a). Using one-hot prediction target could overly push view b2 close to view
b1 while away from view a1 and make the representations ignoring the seman-
tic information about birds and learning the sample-specific information, like
background and color distribution. Therefore, we make the prediction distribu-
tion in CPN approximating a latent distribution (e.g., the uniform distribution)
to prevent overconfident one-hot prediction during training. The most related
methods, Label Smoothing [41, 33] and Confidence Penalty [34], use f -divergence
to measure the difference between the prediction distribution and the latent dis-
tribution. However, f -divergence does not consider the semantic relationships
among classes, since the difference in the prediction probability of each class is
computed independently. Instead, we use the Wasserstein distance [7] which can
impose appropriate penalty based on the semantic relationships among classes.
We solve the optimal transport problem using Sinkhorn iteration [13, 1] which
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Fig. 1. (a) Some negative pairs (e.g., (a1, b2)) may be semantically similar or even
belong to the same semantic class. (b) Overview of our CPNWCP model. We select a
batch of samples and generate in-class samples for each one via data augmentations.
We combine the prototypical loss with pairwise contrast. To alleviate the problem of
learning sample-specific information, we propose Wasserstein Confidence Penalty which
make the prediction distribution approximating the uniform distribution.

works well with the automatic differentiation libraries for deep learning, without
computing the second-order gradients. This method is denoted as Wasserstein
Confidence Penalty, which effectively alleviates the problem of learning sample-
specific information.

The framework of our full model, CPNWCP (Contrastive Prototypical Net-
work with Wasserstein Confidence Penalty), is shown in Fig. 1(b). The main
contributions of this work are as follows:

– Under a unified paradigm of contrastive learning and unsupervised few-shot
learning, we conduct empirical study and find that pairwise contrast, meta
losses and large batch size are the key factors to the satisfactory performance
on novel few-shot tasks, which results in our CPN model.

– To prevent CPN from learning sample-specific information, we propose Wasser-
stein Confidence Penalty which significantly improves the performance of
CPN and outperforms the f -divergence based confidence penalty methods.

– Our CPNWCP model achieves state-of-the-art performance on standard un-
supervised few-shot learning datasets, miniImageNet and tieredImageNet.

2 Related work

Unsupervised few-shot learning. Although various few-shot learning models [40,
15, 27, 53, 5] have achieved impressive performance, they rely on sufficient labeled
data during training, which is difficult to acquire in some domains. Unsupervised
few-shot learning [21, 23, 25, 54, 2, 50, 26] aims to learn the task-shared inductive
bias from the unlabeled dataset. These models generate pseudo few-shot tasks to
train the meta-learning models through various techniques. [21, 23] construct the
partitions of unlabeled dataset through clustering in the embedding space and
thus obtain the pseudo labels. [25, 54, 2, 50] randomly select a batch of samples
with small batch size (e.g., 5) and each sample is assumed from the different
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class. They generate the in-class samples via data augmentations to construct
the support set and query set. LASIUM [26] generate the in-class and out-of-
class samples via interpolation in the latent space of a generative model. Besides,
ProtoTransfer [30] also constructs few-shot tasks via data augmentations, but
uses a large batch size and achieves significant improvement. It means that large
batch size may be a key factor to the good performance on novel few-shot tasks.

Contrastive learning. Contrastive learning [4, 18, 9, 51, 45] is a successful self-
supervised representation learning [24, 46] framework that learns well-generalizing
representations from large scale unlabeled dataset. In the training phase, they
typically select a batch of samples from the unlabeled dataset and generate dif-
ferent views for each sample via data augmentations. Generally, they push the
views from the same sample (positive pair) close to each other and the views
from different samples (negative pair) away from each other in the embedding
space. The training objectives are typically to maximize the lower bound on the
mutual information [20, 4, 18, 9, 47] or make the cross-correlation matrix between
positive pair as close to the identity matrix as possible [51], which indirectly learn
semantic relevance among samples (linear separability or proximity in the em-
bedding space) and not as suitable for few-shot learning as some meta-losses.
Contrastive learning avoids representation collapse via large batch size and it also
adapts pairwise contrast, i.e., each view is compared with all other views from
the same sample, which is helpful for learning useful representations. Chuang et
al. [12] and Wei et al. [48] point out the “sampling bias” problem, and propose
a debiased objective and consistency regularization respectively.

Confidence penalty. For a network, over-confident prediction is a symptom of
overfitting. For this end, Label Smoothing [41, 33, 52] relaxes the one-hot label
to a soft version which is equivalent to adding uniform label noise. Confidence
Penalty [34] penalizes low entropy prediction following the maximum entropy
principle [22]. They essentially make the prediction distribution approximating
a latent distribution, such as the uniform distribution or a learnable distribu-
tion [52]. Both Label Smoothing and Confidence Penalty use f -divergence to
measure the difference between distributions, which ignores the semantic rela-
tionships among classes. We explore the Wasserstein distance and introduce the
semantic relationships with cost matrix. With semantic relationships as prior in-
formation, our Wasserstein Confidence Penalty can impose appropriate penalty
and outperforms both Label Smoothing and Confidence Penalty in CPN.

3 Methodology

3.1 Preliminaries

Few-shot learning aims to obtain the model which can efficiently and effectively
solve novel few-shot tasks. Each few-shot task contains a support set S and a
query set Q. When the support set S contains N classes with K samples in
each class, the few-shot task is called a N -way K-shot task, and N = 5 and
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K = 1 or 5 is the standard setting. The query set Q contains the samples from
the same classes with the support set S. We need to classify the samples in the
query set correctly based on the few labeled data from the support set. Since K
is typically very small, this is challenging for modern deep learning models. To
this end, one can learn the inductive bias from a large base training set D, which
has completely disjoint classes with the novel tasks. Meta-learning models [40,
15, 27] adapt episode training [42], where few-shot training tasks are constructed
from the base training set D. Some non-episodical transfer learning models [10,
14, 55] also achieve comparable performance.

In most cases, the large base training set D is labeled, so we can easily
construct few-shot training tasks based on labels. However, obtaining sufficient
labeled dataset is difficult or even impossible for some domains, e.g., satellite
imagery and skin diseases, so we assume the training set is unlabeled in this
work and learn the inductive bias in the unsupervised manner.

3.2 Contrastive Prototypical Network

We first describe a unified paradigm, and then take the data augmentation based
unsupervised few-shot learning models, contrastive learning models and our CPN
model as its special cases.

Given an unlabeled dataset D, samples {xi}Ni=1 are randomly selected and

each xi represents a pseudo class. For each xi, in-class samples {vji }Mj=1 are
generated via manually or learnable data augmentations. For a specific problem,
the loss function L is designed and calculated on the sub-dataset {vji }

N,M
i=1,j=1

and the sub-task training objective is

min
θ

Ep({vj
i }

N,M
i=1,j=1)

[L({vji }
N,M
i=1,j=1, θ)] (1)

where θ represents the model parameters. We denote this paradigm as the
Sampling-Augmentation paradigm.

Data augmentation based unsupervised few-shot learning models [25, 54, 26]
follow this paradigm and achieve outstanding performance. Let M = S+Q, the
augmented samples {vji }

N,M
i=1,j=1 constitute a pseudo S-shot training task with

N · S samples as the support set S and the N · Q samples as the query set
Q. These pseudo few-shot tasks can be directly used to train the meta-learning
models, which means L can be various meta losses and the training objective is

min
θ

Ep({vj
i }

N,M
i=1,j=1)

[Lmeta({vji }
N,M
i=1,j=S+1, ψ)], ψ = A({vji }

N,S
i=1,j=1, θ) (2)

where A is a base learner and ψ is the task solution. Following the episode
training, N is typically set small while M is set large, such as N = 5 and
M = 5+ 15. This setting is popular in the few-shot learning, since it makes the
training setting aligning with the test scenario. However, we find that the small
batch size is not suitable for unsupervised few-shot learning, as shown in Fig. 2.

Most contrastive learning models [20, 4, 18, 9] also follow this paradigm and
achieve outstanding success in the field of self-supervised representation learning.
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It is usually assumed that different views {vji }Mj=1 share the semantic informa-
tion from the input xi, so the view-invariant representations are expected. For
example, many contrastive learning models [20, 49, 18, 9] maximize the mutual
information between the representations of positive pair, and the training loss is
the InfoNCE lower bound estimate [35]. M is typically set 2 for simplicity and
the training objective is

minθ Ep({vj
i }

N,2
i=1,j=1)

[
− 1

2N

∑N
i=1

∑2
j,l=1;j ̸=l ln

exp(hθ(gθ(v
j
i ),gθ(v

l
i)))∑N

s=1

∑2
t=1,(s,t)̸=(i,j) exp(hθ(gθ(v

j
i ),gθ(v

t
s)))

]
(3)

where gθ is an encoder network and hθ contains a multilayer perceptron used
to calculate the InfoNCE lower bound. Each view vji is compared with all other
views {vli}Ml=1, l ̸= j from the same sample xi, i.e., pairwise contrast, which is
useful in unsupervised few-shot learning, as shown in Table 3. The batch sizeN is
typically set large to avoid representation collapse, such as N = 4096 in SimCLR
[9]. Although the contrastive learning models can be applied in unsupervised few-
shot learning, their training losses indirectly learn the semantic relevance among
samples, e.g., using mutual information or cross-correlation matrix [51], which
are not as suitable as directly comparing the representations of different views,
like prototypical loss, as shown in Fig. 2.

Our CPN model combines the advantages of both the contrastive learning
models and the data augmentation based unsupervised few-shot learning models.
We adopt a big batch size and introduce pairwise contrast to a widely used meta
loss, prototypical loss [40]. The training objective is

minθ Ep({vj
i }

N,M
i=1,j=1)

[
− 1

NM2

∑M
l=1

∑N
i=1

∑M
j=1 ln

exp(−∥gθ(vj
i )−gθ(v

l
i)∥

2)∑N
k=1 exp(−∥gθ(vj

i )−gθ(vl
k)∥2)

]
(4)

The l-th view {vli}Ni=1 is used as the one-shot support set to classify all the
views. We directly compare the representations of different views without us-
ing the multilayer perceptron to calculate mutual information estimation. With
modestly large batch size, our CPN outperforms both the unsupervised few-shot
learning models and some classical contrastive learning models.

In addition to the empirical study, we also provide some theoretical or intu-
itive justification for the above key factors.
1) Pairwise contrast. Each positive pair provides supervised information to each
other under the unsupervised setting [45], and the model learns semantic knowl-
edge from the shared information between views. Obviously, pairwise contrast
brings more shared information between views which contains more useful knowl-
edge. Concretely, assuming there areM views, we have Ipc =

∑M
l=1

∑
k ̸=l I(vl, vk) ≥

Iw/o pc =
∑

k ̸=1 I(v1, vk), where ‘pc’ represents ‘pairwise contrast’ and we set
view v1 as the anchor view when without pairwise contrast.
2) Meta losses. Compared with the contrastive losses which indirectly learn the
semantic relevance among samples via mutual information or cross-correlation
matrix, the meta losses typically directly compare the representations of differ-
ent views (especially the metric-based meta losses), and are more suitable for
few-shot scenarios, i.e., semantic matching between support and query samples.
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3) Large batch size. In the instance discrimination task, the number of classes is
directly related to the batch size. Our CPN and some contrastive learning mod-
els adopt the cross-entropy loss and may encounter log-K curse [8]. Concretely,

the cross-entropy loss is H = − log
exp(sy)∑N
i=1 exp(si)

= log(1 +
∑

i̸=y exp(si − sy)),

where (s1, · · · , sN ) is the prediction logits. After several training epochs, sy
is significantly larger than si, i ̸= y and exp(si − sy), i ̸= y are small, so
H ≈ log(1 + (N − 1)ϵ) with ϵ is a small constant. When we use a small batch
size, H ≈ (N − 1)ϵ ≈ 0 and floating-point precision can lead to large gradient
variance, hurting performance.

3.3 Wasserstein Confidence Penalty

As shown in Fig. 1(a), some negative pairs in CPN could be semantically similar
or even belong to the same semantic class. Using the one-hot prediction target
as in Eq. (4) could overly push the semantically similar negative pairs away from
each other, which has the risk of learning sample-specific information rather than
generalizing semantic information in the representations.

Further, when we use a large batch size, this problem becomes serious since
the probability that the samples from the same semantic class appear in the
selected batch significantly increases. For this end, we make the prediction dis-
tribution approximating a latent distribution during training to prevent over-
confident prediction, which we denote as confidence penalty. For CPN, when
we use {vli}Ni=1 as one-shot support set, the prediction distribution of a view v

is plθ(i|v) =
exp(−∥gθ(v)−gθ(v

l
i)∥

2)∑N
k=1 exp(−∥gθ(v)−gθ(vl

k)∥2)
. We introduce a plug-and-play confidence

penalty term D(plθ(i|v), q), where D(·, ·) is a distance metric between distribu-
tions and q represents a latent distribution. Therefore, the Eq. (4) becomes

min
θ

Ep({vj
i }

N,M
i=1,j=1)

 1

NM2

M∑
l=1

N∑
i=1

M∑
j=1

(
− ln plθ(i|v

j
i ) + λD(plθ(i|v

j
i ), q)

) (5)

where λ is a weight coefficient. The ideal choice for distribution q is the ground-
truth class distribution in the instance classification task, which has non-ignorable
probability in the semantically similar pseudo classes and we can not obtain
it without labels. Therefore, we simply set q as the uniform distribution, i.e.,
qk = 1/N, k = 1, · · · , N . For distance metric D, we consider different choices.

For simplicity, let e be a one-hot distribution and p be the prediction dis-
tribution, a widely-used choice for distance metric D(p, q) is the f -divergence

D(p, q) =
∑N

k=1 f(pk/qk) · qk, where f is a convex function with f(1) = 0.
When f(z) = z ln z, the f -divergence becomes the Kullback–Leibler divergence

D(p, q) = KL(p∥q) =
∑N

k=1 pk ln pk + lnN . This is the regularization term
from [34], named Confidence Penalty. It penalizes low entropy prediction dis-
tributions following the maximum entropy principle [22] and is also used in
reinforcement learning [29, 32]. When f(z) = − ln z, the f -divergence becomes
the reverse Kullback–Leibler divergence KL(q∥p) and this regularization term
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is equivalent to Label Smoothing [41, 33]. Concretely, H(e, p) + λKL(q∥p) =

H(e+λq, p)−λ lnN , where H(e, p) = −
∑N

k=1 ek ln pk is cross-entropy. e+λq is
equivalent to (1−α)e+αq, which is just the target distribution in Label Smooth-
ing and α is typically set 0.1. When f(z) = [(z + 1) ln(2/(z + 1)) + z ln z]/2, we
get a symmetric f -divergence, Jensen–Shannon divergence.

The difference in the probability of each class is computed independently
in f -divergence and the structural information, i.e., the semantic relationships
among different classes, is ignored. For this end, we use the Wasserstein distance
[7] W (p, q) to introduces the semantic relationships as the prior knowledge. To
calculate W (p, q), we need to solve the optimal transport problem

min
T

N∑
i=1

N∑
j=1

Tij · Cij (6)

s.t. Tij ≥ 0, i = 1, · · · , N, j = 1, · · · , N
N∑
j=1

Tij = pi, i = 1, · · · , N ;

N∑
i=1

Tij = qj , j = 1, · · · , N

where T ∈ RN×N is a transportation matrix and C ∈ RN×N is the cost matrix.
Cij represents the cost of transporting per unit probability from class i to class
j. Tij represents the amount of the probability transported from class i to class
j. Let the solution of the problem (6) be T ∗, which is the matching flows with

the minimum cost between p and q, we have W (p, q) =
∑N

i=1

∑N
j=1 T

∗
ij ·Cij . The

cost matrix C is the key to introduce the structural information. Cij can be un-
derstood as the cost of misclassifying a sample from class i to class j. Intuitively,
the higher the semantic similarity between class i and class j, the smaller the
transportation cost Cij should be. Therefore, we define the transportation cost
as a decreasing function of class similarity

Cij = γ · (1− Sij) + Ii=j (7)

where γ is a scaling factor, Ii=j is an indicator function in the condition i = j
and is used to avoid zero cost, and Sij represents the semantic similarity between
class i and class j. Although this definition can not satisfy W (p, p) = 0, we find
avoiding zero cost can achieve better performance in practice. In the batch of
samples {xi}Ni=1, we label each xi as a pseudo class i. Considering that mean
can weaken sample differences and highlight intra-class commonality, we use the
mean of the representations of views {vji }Mj=1 to represent each pseudo class i

and use their cosine similarity as the class similarity, i.e., Sij =
rTi rj

∥ri∥∥rj∥ with

ri =
1
M

∑M
j=1 gθ(v

j
i ). We thus can measure the difference between distributions

in a way that is sensitive to semantic relationships among classes.
To solve the problem (6), we use the Sinkhorn iteration [13, 1] which enforces

a simple structure on the optimal transportation matrix and can quickly solve
the optimal transport problem. The gradients can be back-propagated along the
iteration process, so it works well with the automatic differentiation libraries for
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Table 1. Few-shot classification accuracy(%) with 95% confidence interval on 10,000
5-way K-shot tasks randomly sampled from miniImageNet.

Model 1-shot 5-shot 20-shot 50-shot

Train from scratch [21] 27.59 ± 0.59 38.48 ± 0.66 51.53 ± 0.72 59.63 ± 0.74

CACTUs-ProtoNet [21] 39.18 ± 0.71 53.36 ± 0.70 61.54 ± 0.68 63.55 ± 0.64
CACTUs-MAML [21] 39.90 ± 0.74 53.97 ± 0.70 63.84 ± 0.70 69.64 ± 0.63
UMTRA [25] 39.93 50.73 61.11 67.15
ULDA-ProtoNet [36] 40.63 ± 0.61 56.18 ± 0.59 64.31 ± 0.51 66.43 ± 0.47
ULDA-MetaOptNet [36] 40.71 ± 0.62 54.49 ± 0.58 63.58 ± 0.51 67.65 ± 0.48
LASIUM-ProtoNet [26] 40.05 ± 0.60 52.53 ± 0.51 59.45 ± 0.48 61.43 ± 0.45
LASIUM-MAML [26] 40.19 ± 0.58 54.56 ± 0.55 65.17 ± 0.49 69.13 ± 0.49
ArL-RelationNet [54] 36.37 ± 0.92 46.97 ± 0.86 - -
ArL-ProtoNet [54] 38.76 ± 0.84 51.08 ± 0.84 - -
ArL-SoSN [54] 41.13 ± 0.84 55.39 ± 0.79 - -

SimCLR [9] 40.91 ± 0.19 57.22 ± 0.17 65.74 ± 0.15 67.83 ± 0.15
BYOL [16] 39.81 ± 0.18 56.65 ± 0.17 64.58 ± 0.15 66.69 ± 0.15
BarTwins [51] 39.02 ± 0.18 57.20 ± 0.17 65.26 ± 0.15 67.42 ± 0.14

ProtoCLR [30] 44.89 ± 0.58 63.35 ± 0.54 72.27 ± 0.45 74.31 ± 0.45
CPNWCP (ours) 47.93 ± 0.19 66.44 ± 0.17 75.69 ± 0.14 78.20 ± 0.13

ProtoNet-Sup [40] 49.42 ± 0.78 68.20 ± 0.66 - -

deep learning. Besides, there is no gradient calculation in the forward iterations,
so the optimization process does not need to calculate the second-order gradients.
This regularization method is denoted as Wasserstein Confidence Penalty.

We apply Wasserstein Confidence Penalty to CPN and get CPNWCP (Con-
trastive Prototypical Network withWasserstein Confidence Penalty) model which
has the training objective of Eq. (5).

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate the models on two standard few-shot learning bench-
marks, miniImageNet [42] and tieredImageNet [38]. The miniImageNet dataset
is a subset of ImageNet [39] and consists of 100 classes with 600 images per
class. Following the commonly-used protocol from [37], we use 64 classes as the
base training set, 16 and 20 classes as validation set and test set respectively.
The tieredImageNet dataset is a larger subset of ImageNet, composed of 608
classes grouped into 34 high-level categories. These categories are divided into
20 categories for training, 6 categories for validation and 8 categories for test,
which corresponds to 351, 97 and 160 classes respectively. In order to simulate
the unsupervised setting, we do not use the labels in the training set during
training, nor do we use the labeled validation set to select the best checkpoint.



10 Wang and Deng

Table 2. Few-shot classification accuracy(%) with 95% confidence interval on 10,000
5-way K-shot tasks randomly sampled from tieredImageNet.

Model 1-shot 5-shot 20-shot 50-shot

Train from scratch [36] 26.27 ± 1.02 34.91 ± 0.63 38.14 ± 0.58 38.67 ± 0.44

ULDA-ProtoNet [36] 41.60 ± 0.64 56.28 ± 0.62 64.07 ± 0.55 66.00 ± 0.54
ULDA-MetaOptNet [36] 41.77 ± 0.65 56.78 ± 0.63 67.21 ± 0.56 71.39 ± 0.53

SimCLR [9] 35.60 ± 0.17 52.88 ± 0.19 61.09 ± 0.17 63.47 ± 0.17
BYOL [16] 37.11 ± 0.18 52.71 ± 0.19 60.56 ± 0.17 62.68 ± 0.16
BarTwins [51] 35.39 ± 0.17 52.01 ± 0.18 60.19 ± 0.17 62.57 ± 0.16

CPNWCP (ours) 45.00 ± 0.19 62.96 ± 0.19 72.84 ± 0.17 76.03 ± 0.15

ProtoNet-Sup [40] 53.31 ± 0.89 72.69 ± 0.74 - -

Implementation details. For fair comparison with previous models [21, 25, 36, 26,
54, 30], we use Conv4 as the backbone which consists of four convolutional blocks
with 64 filters for each convolutional layer. We also perform a series of exper-
iments on ResNet12 [19] for comprehensive study. For all experiments, we use
random cropping, flip and random color distortion as the data augmentations,
like in [25, 30]. The models are trained for 600 epochs using Adam optimizer with
the learning rate of 1e-3. We set the batch size N = 64 for miniImageNet and
N = 192 for tieredImageNet. The number of augmented views for each sample
is set M = 4 for Conv4 and M = 8 for ResNet12. For different datasets and
backbones, we set the regularization coefficient λ = 1 and choose scaling factor
γ from {6, 8, 10, 12}. We set the number of Sinkhorn iteration as 5. For Label
Smoothing, we choose the label relaxation factor α from {0.1, 0.01, 0.001}.

Evaluation protocol. We evaluate the models in the standard 5-way 1-shot/5-
shot tasks and the tasks with more support samples, i.e., 5-way 20-shot/50-shot
tasks. We use 10,000 randomly sampled few-shot tasks with 15 query samples
per class, and report the average accuracy (%) as well as 95% confidence interval.
Unless otherwise specified, all non-meta-learning models, including our models
and contrastive learning models, use a prototype-based nearest neighbor classifier
[40] to solve the novel few-shot tasks based on the pre-trained backbone.

4.2 Comparison with State-Of-The-Arts

We compare our full model, CPNWCP, with existing unsupervised few-shot
learning models [21, 25, 36, 30, 26, 54] and classical contrastive learning models
[9, 16, 51]. Among them, Medina et al. [30] uses a large batch size prototypical
loss but not pairwise contrast and Wasserstein Confidence Penalty. We report its
results without further fine-tuning for fairness, i.e., the results of ProtoCLR. The
results of training a classifier on the support set from scratch is used as the lower
bound for performance. The results of supervised ProtoNet [40] are also provided
as the supervised baseline. Table 1 and Table 2 provide the results on miniIma-
geNet and tieredImageNet respectively, and the best unsupervised result in each
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Fig. 2. Average few-shot classification accuracy across four different settings (5-way
1-shot/5-shot/20-shot/50-shot) on miniImageNet with varying batch size.

Table 3. Few-shot classification accuracy(%) with 95% confidence interval on 10,000
5-way K-shot tasks sampled from miniImageNet. ‘PC’ represents ‘pairwise contrast’.

Model Backbone 1-shot 5-shot 20-shot 50-shot

CPN w/o PC
Conv4

46.08 ± 0.19 63.89 ± 0.17 72.59 ± 0.14 74.81 ± 0.14
CPN 46.96 ± 0.19 64.75 ± 0.17 73.31 ± 0.14 75.63 ± 0.14

CPN w/o PC
ResNet12

48.80 ± 0.19 69.09 ± 0.16 78.54 ± 0.13 80.83 ± 0.12
CPN 50.01 ± 0.18 70.73 ± 0.16 80.33 ± 0.13 82.74 ± 0.11

setting is in bold. All models use Conv4 as the backbone for fair comparison. As
we can see, our CPNWCP outperforms all previous unsupervised few-shot learn-
ing models and classical contrastive learning models with a large margin, and
achieves the performance much closer to the supervised baseline. Besides, many
unsupervised methods (e.g., ULDA, SimCLR and our CPNWCP) have a larger
gap to the supervised baseline on tieredImageNet than that on miniImageNet.
The reason may be that, the classes in tieredImageNet are structural and there
are many similar classes under the same category. These classes rely on label
information to be well discriminated for learning relevant semantic knowledge,
which is not friendly to unsupervised learning. Despite tieredImageNet is a more
difficult dataset, our CPNWCP still significantly outperforms existing baselines.

4.3 Empirical Study on Sampling-Augmentation Paradigm

As shown in Table 1, contrastive learning models [9, 16, 51] outperform the mod-
els [21, 25, 36, 26, 54] which construct pseudo few-shot tasks with small batch
size, but are inferior to the model [30] using large batch size and prototypical
loss. This inspires us that when some meta losses are combined with large batch
size, the contrastive losses have no advantage any more. Therefore, we empir-
ically study three important factors in the Sampling-Augmentation paradigm:
the loss function L, the batch size N and the view number M . We consider
three classical contrastive losses [9, 16, 51] and a meta loss [40]. N is chosen from
{5, 32, 64, 128} and M is chosen from {2, 4, 6, 8}. For fair comparison, we intro-
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Table 4. Few-shot classification accuracy(%) with 95% confidence interval on 10,000
5-way K-shot tasks sampled from miniImageNet. We provide the results of Consis-
tency Regularization (‘+CR’) [48], Label Smoothing (‘+LS’) [41], Confidence Penalty
(‘+CP’) [34], Jensen–Shannon Confidence Penalty (‘+JSCP’) and our Wasserstein Con-
fidence Penalty (‘+WCP’).

Model Backbone 1-shot 5-shot 20-shot 50-shot

CPN

Conv4

46.96 ± 0.19 64.75 ± 0.17 73.31 ± 0.14 75.63 ± 0.14
+ CR [48] 47.33 ± 0.19 65.15 ± 0.17 73.28 ± 0.14 75.50 ± 0.14
+ LS [41] 47.19 ± 0.19 65.22 ± 0.17 74.21 ± 0.14 76.71 ± 0.13
+ CP [34] 47.22 ± 0.19 65.46 ± 0.17 74.52 ± 0.14 77.05 ± 0.13
+ JSCP 46.82 ± 0.19 64.89 ± 0.17 73.92 ± 0.14 76.37 ± 0.13
+ WCP (ours) 47.93 ± 0.19 66.44 ± 0.17 75.69 ± 0.14 78.20 ± 0.13

CPN

ResNet12

50.01 ± 0.18 70.73 ± 0.16 80.33 ± 0.13 82.74 ± 0.11
+ CR [48] 51.85 ± 0.19 72.23 ± 0.16 81.35 ± 0.12 83.28 ± 0.11
+ LS [41] 50.41 ± 0.19 71.10 ± 0.16 80.97 ± 0.12 83.61 ± 0.11
+ CP [34] 50.71 ± 0.18 71.29 ± 0.16 81.11 ± 0.12 83.91 ± 0.11
+ JSCP 49.87 ± 0.18 70.53 ± 0.16 81.01 ± 0.13 83.19 ± 0.11
+ WCP (ours) 53.56 ± 0.19 73.21 ± 0.16 82.18 ± 0.12 84.35 ± 0.11

duce pairwise contrast from contrastive learning to the prototypical loss, i.e.,
each view is used as the one-shot support set to classify other views.

Considering that using the prototype-based nearest-neighbor classifier seems
unfair for the comparison between the prototypical loss and contrastive losses, we
provide the results with ridge regression classifier [6] in Fig. 2 which examines
linear separability. ‘CPN’ represents prototypical loss with pairwise contrast,
‘SimCLR’, ‘BYOL’ and ‘BarTwins’ represent contrastive losses with pairwise
contrast. Similar to Table 1, contrastive learning models with large batch size
N = 64 outperform the prototypical loss with small batch size N = 5. But when
the batch size is the same, contrastive learning models consistently perform
worse than the prototypical loss. Besides, more augmented views lead to better
performance due to increased view diversity, especially for large backbone.

To explore the effect of pairwise contrast, we evaluate the performance of
CPN without pairwise contrast, i.e., only using one randomly selected view
{vli}Ni=1 as the one-shot support set to classify all views. The comparison results
are shown in Table 3, where we still use a prototype-based nearest neighbor
classifier [40]. We set (N = 64, M = 4) for Conv4 and (N = 64, M = 8)
for ResNet12. As we can see, pairwise contrast achieves consistent performance
improvement under different task settings and backbones, especially for large
backbone. This shows its potential for larger backbones.

4.4 Ablation Study on Confidence Penalty

As we analyze in Section 3.3, since some negative pairs could be semantically
similar or even from the same semantic class, using one-hot prediction target has
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Fig. 3. Few-shot classification accuracy (%) on 10,000 5-way 1-shot/5-shot/20-shot/50-
shot tasks sampled from miniImageNet. We provide the results of Wasserstein Confi-
dence Penalty with different scaling factor γ = {6, 8, 10, 12}. The results of CPN are
also provided for clear comparison.

the risk of learning sample-specific information instead of generalizing semantic
information. This problem is also referred as ‘sampling bias’ [12] in contrastive
learning, and Wei et al. [48] proposes Consistency Regularization to alleviate
this problem, which can be directly used in CPN. In this work, we propose to
make the prediction distribution approximating a latent distribution to prevent
overconfident one-hot prediction. We consider different distance metrics between
distributions and compare their effect in CPN, including classical f -divergences
and Wasserstein distance. We conduct experiments on miniImageNet and use
both Conv4 and ResNet12 as backbone for comprehensive study.

The few-shot classification results are shown in Table 4 and the best result
in each setting is in bold. Most regularization methods consistently improve the
performance of CPN. Using Jensen-Shannon divergence (‘+JSCP’) is inferior to
using Kullback–Leibler divergence (‘+CP’ and ‘+LS’), which means symmetry
is not required for the distance metric between the prediction distribution and
the latent distribution. Using the Wasserstein distance (‘+WCP’) outperforms
all f -divergence based confidence penalty methods (‘+LS’, ‘+CP’ and ‘+JSCP’),
which means imposing appropriate penalty based on the semantic relationships
among classes helps to learn more general semantic information. Our Wasserstein
Confidence Penalty also significantly outperforms the Consistency Regulariza-
tion (‘+CP’) [48] in unsupervised few-shot learning.

We also explore the performance of Wasserstein Confidence Penalty with
different scaling factor γ, which controls the probability transportation cost be-
tween classes. We conduct experiments under the same settings as above and the
results are shown in Fig. 3. We provide the results of CPN for clear comparison.
As we can see, Wasserstein Confidence Penalty is robust to different γ and can
achieve consistent improvement with most candidate scaling factors.

Furthermore, Guo et al. [17] points that although many modern neural net-
works have better performance, they are poorly calibrated and over-confident.
In other words, the confidence of their predictions cannot accurately represent
their accuracy, which is potentially harmful in many real-world decision making
systems. To measure calibration, the authors propose the estimated Expected
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Fig. 4. Expected Calibration Error on different backbones (Conv4 and ResNet12) and
settings (5-way 1-shot/5-shot/20-shot/50-shot). We provide the results of CPN model
and various confidence penalty methods: Label Smoothing (‘+LS’) [41], Confidence
Penalty (‘+CP’) [34] and our Wasserstein Confidence Penalty (‘+WCP’).

Calibration Error (ECE), and it is widely used nowadays. Some works [33, 28, 52]
shows that Label Smoothing and Confidence Penalty can improve the calibration
of the models in supervised learning. Here we explore whether various confidence
penalty methods can improve the calibration of CPN under unsupervised set-
ting. For fair comparison, we calculate the estimated Expected Calibration Error
without temperature scaling which not only improves calibration, but also hides
the trends in calibration among models [31]. The results calculated on 10,000
sampled tasks are shown in Fig. 4 and the corresponding accuracy is provided
in Table 4. As we can see, the models have better calibration property as the
support shot increases, which means we can use more support data to simulta-
neously increase accuracy and improve calibration. Various confidence penalty
methods not only improve the few-shot classification accuracy, but also improve
the calibration of CPN. Although Label Smoothing has the best calibration
property, our Wasserstein Confidence Penalty achieves comparable calibration
results and better accuracy on novel few-shot tasks.

5 Conclusions

In this work, we investigate existing unsupervised few-shot learning models and
contrastive learning models and find a unified paradigm above them. To find
the key design factors for unsupervised few-shot learning, we conduct empiri-
cal study and propose CPN model which combines the prototypical loss with
pairwise contrast from contrastive learning. Besides, we also provide theoretical
or intuitive justification for these key factors. Furthermore, when using a large
batch size, CPN has the risk of learning sample-specific information. To this
end, we propose Wasserstein Confidence Penalty to prevent overconfident one-
hot prediction. Our full model, CPNWCP (Contrastive Prototypical Network
with Wasserstein Confidence Penalty), achieves state-of-the-art performance in
unsupervised few-shot learning. Besides, Wasserstein Confidence Penalty can
also be used in contrastive learning to alleviate the ‘sampling bias’ problem and
we will explore its effect in the future work.
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supervised meta-learning through latent-space interpolation in generative models.
In: 9th International Conference on Learning Representations (2021)

27. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable
convex optimization. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 10657–10665 (2019)
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