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1 Detailed Architecture of the LD module

The proposed CDNet cascades several learn-to-decompose (LD) modules with
shared parameters to obtain weighted expression prototypes progressively. We
illustrate the detailed architecture of the proposed LD module in Fig. 1. Each
LD module contains a decomposition block and a weighting block to obtain an
expression prototype and its corresponding weight, respectively. The decompo-
sition block includes a transformation layer, a batch normalization layer, and
an activation layer. The weighting block consists of a three-layer perceptron
network. The dropout layer is used for regularization.

2 Datasets

Our CDNet is trained on multiple basic expression datasets and tested on the
compound expression dataset. Such a cross-domain setting evaluates the gener-
alization ability of our model (trained on multiple source domains) on a novel
compound FER task in the target domain.
Basic Expression Datasets We use five basic expression datasets to form the
training set, including three in-the-lab datasets (CK+, MMI, and Oulu-CASIA),
and two in-the-wild datasets (RAF-DB and SFEW). CK+ involves 327 video
sequences annotated with seven basic expression categories. MMI contains 326
video sequences (205 frontal-view sequences are used) with six basic expression
categories. Oulu-CASIA consists of 2,880 video sequences (480 normal indoor
illumination sequences are used) with six basic expression categories. Three peak
frames of each sequence in the above in-the-lab datasets are selected in our
experiments. RAF-DB includes a basic subset and a compound subset. The
basic subsets with seven basic expression annotations are employed as a part of
the training set. SFEW is also labeled with seven basic expression categories.
All the samples in these basic expression datasets are used for training.
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Fig. 1. Detailed architecture of the proposed LD module. Each LD module contains a
decomposition block and a weighting block. CDNet cascades LD modules with shared
parameters to obtain weighted expression prototypes progressively.

Compound Expression Datasets Three compound expression datasets are
used to evaluate the performance of the learned model. To ensure the disjoint-
ness of base classes and novel classes, only the compound expression subsets
of the compound expression datasets are used for testing, denoted as CFEE C,
EmotioNet C, and RAF C. CFEE C is derived from the CFEE dataset. It is an
in-the-lab dataset and annotated with 15 compound expressions for 230 subjects.
EmotioNet C comes from the EmotioNet challenge. The samples are collected
in-the-wild and annotated with ten compound expression categories. RAF C is
the compound subset of RAF-DB with 11 compound expression categories. All
the samples in these compound expression subsets are used for testing.

3 Influence of Different Balance Weights

We evaluate the influence of balance weights in the fine-tuning stage. First, we
fix λf

r as 1.0, and set λf
d from 0.0 to 1.0. The results are given in Table 1(a).

We can see that, without considering the domain classification loss, our CDNet
achieves the worst recognition accuracy in most cases. This is because of the
domain gap between the training set and the testing set. Meanwhile, a large
value of λf

d will also influence the result (see the first row in Table 1(a)). Our

CDNet obtains the best performance when λf
d is set to 0.01.

We also evaluate the results with the different values of λf
r . The results are

shown in Table 1(b), where λf
d is fix as 0.01 and λf

r is varied from 0.0 to 2.0. We
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Table 1. Influence of different balance weights. The average accuracy (%) of 5-way
few-shot classification tasks is used for evaluation with different values of λf

d and λf
r .

(a) Influence of different λf
d

λf
d

CFEE C EmotioNet C RAF C
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

1 55.47 68.42 54.56 62.74 45.75 62.52
0.1 56.77 68.57 54.73 62.81 45.83 62.75
0.01 56.99 68.98 55.16 63.03 46.07 63.03
0.001 56.34 68.66 54.84 62.7 45.96 62.60

0 56.06 67.99 54.38 62.27 44.73 61.10

(b) Influence of different λf
r

λf
r

CFEE C EmotioNet C RAF C
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

2.0 56.94 68.42 54.45 62.71 45.76 62.67
1.5 56.65 68.51 54.88 62.85 46.01 62.82
1.0 56.99 68.98 55.16 63.03 46.07 63.03
0.5 55.87 68.92 54.66 62.17 45.49 62.22
0.0 55.17 67.85 53.01 61.60 43.78 61.00

(a) Feature (b) Prototype (c) Feature (d) Prototype

Fig. 2. Visualization results with and without the decomposition design. (a), (c) denote
the learned holistic features from the baseline method, where different colors denote
different domains. (b), (d) denote the learned expression prototypes from our cascaded
decomposition, where different colors and markers denote different prototypes and
domains, respectively.

can see that the regularization plays a critical role in the final performance. A
large or a small value of λf

r will both affect the recognition accuracy. Our model
achieves the best performance when λf

r is set to 1.0.

4 Visualization of Decomposition

To validate the importance of the decomposition design, we visualize the holistic
feature obtained by the baseline method and the learned prototypes obtained
by our cascaded decomposition in Fig. 2. The results given by two source do-
mains (an in-the-lab dataset (OULU) and an in-the-wild dataset (SFEW)) and
two target domains (an in-the-lab dataset (CFEE C) and an in-the-wild dataset
(EmotioNet C)) are shown. Note that the expression categories are disjoint be-
tween the source and target domains.

The holistic features extracted by images from the source and target domains
are significantly different (see Fig. 2(a) and Fig. 2(c)). In contrast, the learned
prototypes from these domains are indistinguishable (e.g., the first learned pro-
totypes (marked in red) from different domains (marked in different markers) are
closely distributed in Fig. 2(b) and Fig. 2(d)). Therefore, the learned prototypes
are generic to different expression categories and domains, and are of great sig-
nificant to reconstruct a transferable feature space that can help recognize novel
compound expression categories in the cross-domain FSL setting.


