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Abstract. Long-tailed image recognition presents massive challenges
to deep learning systems since the imbalance between majority (head)
classes and minority (tail) classes severely skews the data-driven deep
neural networks. Previous methods tackle with data imbalance from the
viewpoints of data distribution, feature space, and model design, etc. In
this work, instead of directly learning a recognition model, we suggest
confronting the bottleneck of head-to-tail bias before classifier learning,
from the previously omitted perspective of balancing label space. To
alleviate the head-to-tail bias, we propose a concise paradigm by progres-
sively adjusting label space and dividing the head classes and tail classes,
dynamically constructing balance from imbalance to facilitate the classi-
fication. With flexible data filtering and label space mapping, we can
easily embed our approach to most classification models, especially the
decoupled training methods. Besides, we find the separability of head-
tail classes varies among different features with different inductive biases.
Hence, our proposed model also provides a feature evaluation method and
paves the way for long-tailed feature learning. Extensive experiments
show that our method can boost the performance of state-of-the-arts
of different types on widely-used benchmarks. Code is available at
https://github.com/silicx/DLSA.

Keywords: Image Classification, Long-Tailed Recognition, Normalizing
Flows

1 Introduction

Deep learning shows its superiority in various computer vision tasks [53,32,17],
especially in balanced data scenarios. Though, real-world data is usually severely
imbalanced, following a long-tailed distribution [71,55,34,35], i.e., very few fre-
quent classes take up the majority of data (head) while most classes are in-
frequent (tail). The highly biased data skews classifier learning and leads to
performance drop on tail classes. As shown in Fig. 1, most errors stem from the
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Fig. 1: Confusion matrices of models on ImageNet-LT [38] test set, indicating the
severe head-tail bias and that tail classes are particularly prone to confusion with
head classes (high density at right-top). The correct samples are omitted
for clarity. The classes are ordered by their frequency and merged into 20 bins.

head-to-tail bias and a large number of tail samples are misclassified as head
classes, even with the very recent long-tail learning technique [9].

Many approaches have been proposed to re-balance long-tail learning by bal-
ancing the data distribution [24,15,1,2,6,33], balancing the output logits [41,67],
balancing the training losses [19,20,60,3,46,50,54], balancing the feature space
[63,26,58,25,9] or with balanced training strategy [27,70,22]. However, as it is the
definition of class labels to blame for the long-tailed data distribution, there are
very few works tackling long-tailed recognition from the perspective of balancing
the label space. Samuel et al [48] decompose the class labels into semantic class
descriptors and exploit its familiarity effect, which is commonly used in zero-shot
learning. Wu et al [61] reorganize the class labels into a tree hierarchy by realistic
taxonomy. Both methods partly alleviate the label imbalance but are restricted
by the class setting (semantics, hierarchy). Here, we want to dynamically adjust
the label space according to the imbalance of realistic data distribution to fit
long-tail learning.

We can speculate from Fig. 1 that if the head and tail classes are ideally sep-
arated, the tail-to-head errors and the complexity of imbalanced learning can be
significantly reduced. Thus, we conduct a simple probing to analyze the effect of
head-tail separation in Fig. 2 (detailed in supplementary materials: Supp. Sec. 1).
We separate the test samples into two groups (head: classes with >50 samples;
tail: the rest classes) before individually classifying the groups. Fig. 2 shows
that accurate head-tail separation can help long-tail learning. In light of this,
we incorporate a Dynamic Label Space Adjustment (DLSA) method as shown
in Fig. 3. We propose to first confront the bottleneck of head-to-tail bias and
deal with long-tailed recognition in a two-stage fashion: first adjust the label
space and separate the head and tail samples, and then apply classification for
the divided groups respectively. In virtue of the inductive bias of deep learning
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Fig. 2: The performance curve
of linear classifier on ImageNet-
LT [38] with different head-tail
separation accuracy (50%: ran-
dom separation; 100%: ideal
separation). The separation
model divides the classes into
head and tail, and then we clas-
sify within the two individual
groups. Better separation leads
to a higher overall accuracy.
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Fig. 3: Demonstration of our dynamic label
space adjustment (DLSA). Hi stands for a
head class and Tj is a tail class. We re-define
label space for imbalanced data and divide
head and tail classes into two groups pro-
gressively to reduce head-to-tail bias, seeking
balance from the new data sub-space. DLSA
not only separates head and tail but also re-
defines the label space for the convenience of
classifiers. So some of the head samples may
be tail classes in new label space due to the
Lbal constraint.

feature models (e.g., pretrained backbone), we could define the new label space
as the initial clusters of features and approach head-tail separation. Moreover,
we hope the clusters in the new label space are balanced and contain only a few
classes. We formulate these assumptions on the latent space as: 1) Head-Tail
Separability: the head and tail are separated during the adjustment; 2) Clus-
ter Balancedness: the clusters have balanced sizes; 3) Purity: samples in each
cluster are pure, i.e., belong to as few classes as possible.

Specifically, we propose a plug-and-play module which can be embedded in
most two-stage learning methods [27]. We use Gaussian mixture to model the
pretrained features and produce clusters. Then the samples are divided into two
groups and classified independently, where head and tail classes are desired to
be separated. In practice, multiple modules can be linked to a cascade model
to progressively separate head and tail classes and reduce the imbalance bias.
Experiments show that the dataset partition and label re-assignment can effec-
tively alleviate label bias. On top of that, we find backbone models with various
inductive biases have different head-tail class separability. With DLSA, we can
qualitatively evaluate the feature learning of the backbones from the perspective
of head-to-tail bias, which can facilitate long-tailed recognition in practice.

Our main contributions are: 1) Proposing a dynamic label space adjustment
paradigm for long-tail learning. 2) Our method is plug-and-play and can boost
the performances of the state-of-the-arts on widely-adopted benchmarks. 3) Our
method can also act as an evaluation of feature model selection to guide long-
tailed feature learning and recognition.
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2 Related Work

2.1 Long-Tailed Recognition

Real-world data are long-tailed distributed, which skews machine learning mod-
els. Numerous tasks face the challenge of long-tailed data, including object de-
tection [14], attribute recognition [36] and action understanding [4,37]. There is
increasing literature trying to alleviate the bias brought by imbalanced data.

Some small adjustments to the model components can alleviate imbalanced
learning. The most intuitive approach is re-balance the data distribution, ei-
ther by over-sampling the minority [1,2], or under-sampling of majority [24,15,1].
Data augmentation and generation [6,33,7] also flattens the long-tailed dis-
tribution and helps tail learning. Re-balancing by loss function adjust the
significance of samples on each class [19,20,60,3,46,50,54]. Instead of weighting
the losses, some methods balance the output logits [41,29,67] after training.

There are also methods to modify the whole training process. One of the paths
is knowledge transfer from head classes to tail classes [38,64,27,70,22,30].
Liu et al [38] enhance the feature of minority classes with a memory module.
Zhang et al [64] distill the tail-centric teacher models into the general student
network to facilitate tail learning while keeping the head performance. Some
works involve specific balanced training strategy for imbalanced learning.
Kang et al [27] exploit the two-stage approach by first training a feature ex-
tractor and then re-train a balanced classifier. Zhou et al [70] combine uniform
sampling and reversed sampling in a curriculum learning fashion. Jamal et al [22]
estimate class weights with meta-learning to modulate classification loss.

Recently, self-supervised learning is applied in long-tailed recognition for fea-
ture space re-balancing, among which contrastive learning is the most trendy
technique [42,5,16]. Yang and Xu [63] first use self-supervised pretraining to
overcome long-tailed label bias. Kang et al [26] systematically compare con-
trastive learning with traditional supervised learning and find that the con-
trastive model learns a more balanced feature space which alleviates the bias
brought by data imbalance. Here, our DLSA provides another strong proof for
this conclusion (Sec. 4.4). Wang et al [58] combine contrastive feature learning
and cross-entropy-based classifier training with a curriculum learning strategy.
Jiang et al [25] exploit the contrast of the network and its pruned competitor to
overcome the forgetting of the minority class. Cui et al [9] propose parametric
contrastive learning to rebalance the sampling process in contrastive learning.

However, very few works deal with long-tail bias from the perspective of
balancing label space. Samuel et al [48] incorporate semantic class descriptors
and enhance minority learning with the familiarity effect of the descriptors.
Wu et al [61] reorganize the label space into tree hierarchy with semantics. In
this paper, we propose DLSA to filter the balance subset from imbalanced data.

2.2 Normalizing Flows

Normalizing flows [47,31,43,12] are a family of invertible networks and are widely
adopted in density estimation and generative models. Specifically, a normalizing
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Fig. 4: Method overview. The features x are extracted by pretrained backbones
and sent toGaussian Mixture Flow Filter. The Flow Filter maps the samples
to a Gaussian mixture latent space Z with three constraints: cluster balanced-
ness, purity, and head-tail separability to balance the label space and sepa-
rate head and tail classes. Then we re-group the data according to the likelihood
of each sample. The samples that are more conforming to the Gaussian mixture
(dots) are classified by Cluster-aided Classifier with cluster prior informa-
tion. The samples with low likelihoods (red crosses) are progressively solved by
Flow Filters or classified by a regular classifier at the last layer.

flow g is a cascaded transforms data x ∈ X to representation u in latent space
U : u = g−1(x). By assuming a tractable latent distribution, we can recover the
data distribution with the change of variable formula:

P (x) = P (u) ·
∣∣J (

g−1(x)
)∣∣ , (1)

where J(·) is the Jacobian determinant of a transformation and is a crucial con-
cern in the design of normalizing flows due to its high complexity. Rezende and
Mohamed [47] propose some cascaded normalizing flows and their basic blocks
have linear-time Jacobian computation. Real NVP [12] updates only part of the
input vector in the normalizing flow block with a simple bijection, which is more
capable of modeling high-dimension data distribution. IAF [31] and MAF [43]
are more general than Real NVP, incorporating autoregressive transformations.
In practical applications of density estimation, the latent distribution U is usu-
ally unit Gaussian for simplicity. Some works [21] exploit Gaussian mixture to
explicitly capture the cluster structure of data. In this work, we also use a unit
Gaussian mixture to simultaneously transform data and clusters.

3 Approach

3.1 Preliminaries

Long-tailed recognition is to learn a model that predict labels y = 1, 2, · · · , C
of the data sample x ∈ X , while the training sample numbers of each class
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ni = |{x|y = i, x ∈ Xtrain}| is highly imbalanced. The imbalanceness of data
are measured by imbalance factor β = max(ni)/min(ni) and the β of typical
long-tailed datasets ranges from 10 to 1000.

Since the head-tail separation is a well-known key for long-tail learning,
our idea is to separate head and tail samples recursively and classify in a divide-
and-conquer manner. So the longtailedness is reduced in each partition of data
and, in this sense, we construct balance from imbalance. We first divide head
and tail classes, by re-defining a more balanced label space h = 1, 2, · · · ,K. As
discussed, if we can ideally map the data and labels to a balanced space and
separate head and tail classes, it will be easier to learn classifiers. However, it is
impractical to achieve an absolutely balanced space. So we propose to progres-
sively map and cluster samples, and filter out the samples that are well subject
to the balanced distributions. During the clustering, we force the model to learn
head-tail class separability. In this paradigm, the complexity of long-tail learning
is partially transferred to the label space learning and latent space mapping pro-
cess, while these can be more easily settled with the help of the inductive biases
of pretrained features and the transformation ability of normalizing flows [47].

Backbone Models. Different inductive biases exist in the various deep learning
models and training schemes. Cross-entropy-based supervised learning imposes
class separability on deep feature learning. As previously studied [27], for deep
supervised learning, the data imbalance is mainly detrimental to the classifiers
while the feature learning suffers less. Self-supervised contrastive learning meth-
ods [42,5] introduce instance-level transformation invariance to deep models,
leading to a more balanced feature since there are no labels involved. Further su-
pervised contrastive learning [63,26] combines the two aspects and incorporates
both instance-level multi-view invariance and class-wise contrast. We compare
the main-stream pretrained models with different inductive biases in Sec. 4.4
and supervised contrastive learning shows its superiority over the rest.

Normalizing Flow. As introduced in Sec. 2.2, normalizing flows are invertible
transformations and are suitable for density estimation and distribution map-
ping. We utilize normalizing flows to simultaneously map the data x to repre-
sentations z in a more balanced latent space and estimate the new class label h.
The mathematical beauty of normalizing flow enables the maximum likelihood
estimation and the learning of data mapping. We also design multiple constraints
for the normalizing flows to re-balance the latent space.

3.2 Overview

Fig. 4 depicts the pipeline of our method. We apply our DLSA in feature space
and the initial features are extracted by pretrained self-supervised models. There
are mainly two types of modules arranged in a cascaded manner. Gaussian
Mixture Flow Filter (Sec. 3.3) clusters the input data in latent space and
assigns new cluster labels. Then, the samples are divided into two groups. The
well-clustered samples are filtered out to mitigate the head-to-tail bias and learn-
ing complexity, and are sent to a dedicated Cluster-aided Classifier (Sec. 3.4)
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which exploits the cluster information in classification. The rest outliers are ei-
ther forwarded to the next normalizing flow or regularly classified.

Specifically, the input features are transformed by normalizing flows to a
Gaussian mixture distribution to obtain cluster labels. For better separability
in the long-tailed scenario, besides the maximum likelihood objective of Gaus-
sian mixture, the flow model is constrained by three additional objectives: 1)
Head-tail Separability: head and tail classes should be separated; 2) Cluster
Balancedness: the sizes of latent clusters should be as balanced as possible; 3)
Purity: the samples in each cluster should belong to as few classes as possible.

3.3 Gaussian Mixture Flow Filter

Gaussian Mixture Flow Filter modules transform data to a desired latent distri-
bution, perform clustering and filter the samples. Without loss of generality, we
take the first Flow Filter (magnified in Fig. 4) as an example.

The filter module incorporates a normalizing flow model g−1
θ : X → Z with

trainable parameter θ, mapping data samples x ∈ X to latent distribution z ∈ Z.
To cluster the input samples into K clusters, we assume the latent distribution
P (z) is a Gaussian mixture and each component corresponds to a cluster:

P (z) =

K∑
k=1

P (h = k)P (z|h = k), (2)

where h is the random variable of cluster index. P (z|h = k) = N (z|µk, I) is a
Gaussian probability density with mean vectors µk and identity covariance ma-
trix. The µk are randomly sampled from a normal distribution and fixed during
training [21]. A proper assumption on prior probability P (h) is required for a
tractable optimization methods of NF with GMM. Since P (h) in GMM deter-
mines the “size” of a Gaussian component, with the balancedness assumptions,
the prior probability P (h) can be set to uniform distribution, thus:

P (z) =
1

K

K∑
k=1

P (z|h = k), (3)

and the prediction of sample x is given by Bayes’ theorem:

P (k|x) = P (z|h = k)∑K
k′=1 P (z|h = k′)

, ĥ = argmax
k

P (k|x). (4)

We train the normalizing flow model with end-to-end gradient descent opti-
mization with the following objectives.

Maximum Likelihood Loss and Head-tail Separability. We propose a
weighted maximum likelihood loss to simultaneously train the cluster model
and learn head-tail class separation. With the elegant invertible property of
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normalizing flow and change of variable formula Eq. 1, we can painlessly obtain
the Gaussian mixture likelihood of data sample x:

L(θ;x) =

K∑
k=1

1

K
N (g−1

θ (x)|µk, I)
∣∣J (

g−1
θ (x)

)∣∣ . (5)

The maximum likelihood estimation (MLE) of parameter θ will produce a clus-
tering model. To enhance the separability of head and tail classes of the Flow
Filter, we incorporate sample weighting and impose higher weights on tail sam-
ples than head samples. In DLSA, samples in class i are weighted by:

ω(i) =
n−q
i∑

j n
−q
j

, (6)

where ni is the training sample size of class i. q is a positive number usually
ranging from 1 to 2, hence the tail samples receive larger weights. The weighted
L(θ;x) will impose higher likelihoods on tail samples than head samples, there-
fore tail classes are more likely to be filtered out by Flow Filter and separated
with head classes. The weighted maximum likelihood loss is constructed with
the negative log-likelihood of a data batch B:

LMLE (B) = −
∑
x∈B

ω(y) logL(θ;x). (7)

Training the flow model with a single MLE constraint may result in trivial
solutions or a latent distribution that is not suitable for long-tailed recognition,
e.g., g−1

θ maps all samples to one cluster (Fig. 5 and 6). To avoid model collapse
and degeneration, we introduce two more objectives for the flow filter.
Cluster Balancedness Loss. Though the prior distribution P (h) has been set
to uniform, the posterior after observing data samples X:

P (h = k|X) =
∑
x∈X

P (x|X)P (h = k|x) =
∑
x∈X

1

|X|
P (h = k|x), (8)

can still be imbalanced; if so, the actual cluster sizes would be biased or even
severely long-tailed distributed. To promote cluster balance, we introduce

Lbal(X) = Eh [logP (h|X)] , (9)

a cluster balancedness loss which is the negative entropy of the posterior. It is
also equivalent to the KL divergence between P (k|X) and a discrete uniform
distribution, whose simple proof is shown in Supp. Sec. 2.1. So minimizing the
loss will force the cluster sizes to be more even. As shown in Fig. 5, balancedness
loss can significantly reduce the unbalancedness of the cluster sizes.

In practice, the optimization of Lbal can be unstable, especially with mini-
batch based optimizer [28]. For each mini-batch Bt at tth iteration, p̂ = P (h =
k|Bt) is an unbiased estimator of the posterior P (h = k|X). But small batch



Constructing Balance from Imbalance 9

0 100 200 300 400 500
Cluster id

0K

10K

20K

30K

Cl
us

te
r S

ize

w/o Balancedness Loss

0 100 200 300 400 500
Cluster id

0

200

400

600

800

1000

1200

Cl
us

te
r S

ize

w/ Balancedness Loss

Fig. 5: Cluster sizes of DLSA w/ or
w/o Lbal on ImageNet-LT [27].
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Fig. 6: Cluster purity of DLSA w/ or
w/o Lpure on ImageNet-LT [27].

size can lead to large variance of p̂. Therefore, we propose to exploit the history
information and incorporate a momentum-based estimator: p̃t = ηp̃t−1 + (1 −
η)P (h = k|Bt), where η is decay factor. p̃t−1 is the estimation of last batch and
we set p̃0 to 0. Thus, the bias-corrected estimator p̃t

1−ηt is an unbiased and more
efficient estimator than p̂, and is more stable during mini-batch training. The
proof of its unbiasedness and efficiency is shown in Supp. Sec. 2.2.
Purity Loss. We define a scalar “purity” Purity(k) as the sample proportion of
the largest class in the cluster k. To enhance the class purity in each clusters, we
repeatedly randomly sample a pair of samples xi, xj from two different classes
i, j and suppressing their similarity in cluster predictions:

Lpure(xi, xj) =

K∑
k=1

P (h = k|xi) logP (h = k|xj). (10)

By minimizing the purity loss, we increase the cross-entropy between P (h|xi)
and P (h|xj), thus pushing the two samples farther. Fig. 6 indicates purity loss
effectively increases the purity of the clusters. Different sampling strategies can
be applied to the purity loss. Our experiments show that the best practice is
sampling with equal probability for each class.

Overall, the total loss of Flow Filter module is:

Ltotal = LMLE + λbalLbal + λpureLpure. (11)

Among the constraints, LMLE is for learning the data distribution and its
sample-wise weights make the model lean to head samples, enabling head-tail
separation with sample likelihood P (x). Lpure ensures that each cluster in GMM
belongs to only one class, so we can use cluster information to enhance classifi-
cation. Lbal reduces the longtailedness in clusters and prevents the model from
trivial solutions, e.g., most samples go to one cluster. Lpure and Lbal ensure the
training stability and enhance the separatability learned by LMLE .

Filtering The Flow Filter implements the divide step in the DLSA pipeline.
After training, some samples do not belong to any cluster and become outliers
of the Gaussian mixture. We use a likelihood threshold α to separate the well-
clustered samples and outliers. As shown in Fig. 4, the samples with higher
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confidence (P (x) ≤ α, green and blue) are closer to the cluster centers and
the rest (P (x) > α, red) are outliers of any clusters so they are sent to next
adjustment module to further decrease the training difficulty. Accordingly, the
samples are divided into two groups to separate head and tail classes.

In practice, we set the threshold α to a quantile of P (x) on training data, so
that a certain proportion of data will be filtered out.

3.4 Cluster-Aided Classifier

The high-confidence samples filtered out by the Flow Filter are sent to a Cluster-
aided Classifier. Under ideal conditions, each cluster h in the Flow Filter contains
only one class y, so the prediction can be directly obtained by a simple label-class
mapping. However, the learned Gaussian mixture is rather noisy and besides a
majority class y in one cluster, there are some samples from other classes. To
compensate for these noise samples, we introduce a softer label-class mapping
method. As demonstrated in Fig. 4, for each sample xi, we first compute cluster
prior P (y|h = k̂i), which is the class frequency of training samples belonging to

the sample’s predicted cluster k̂i. The cluster prior vector and the concatenation
of feature xi and latent representation zi are forwarded to two independent
fully-connected layers (FC). Their outputs are added and we take its Softmax

as output probability: P (y|x, z) = Softmax
(
FC[x, z] + FC[P (y|h = k̂i)]

)
.

4 Experiment

4.1 Datasets

We evaluate our approach on three main-stream benchmarks: ImageNet-LT [38],
Places-LT [38], and iNaturalist18 [56]. ImageNet-LT [38] and Places-LT [38] are
long-tailed subsets of ImageNet [11] and Places-365 [69], with 1,000 and 365
categories and about 186 K and 106 K images respectively. Both datasets have
Pareto distributed train sets and balanced test sets and the imbalanced factor β
is 256 and 996. iNaturalist18 [56] is a fine-grained image classification dataset
which is naturally highly imbalanced (β = 500), with 8,142 categories and over
437 K images. Following [38], we report overall accuracy on all datasets, and
Many-shot (classes with over 100 images), Medium-shot (classes with 20-100
images), Few-shot (classes with fewer than 20 images) accuracy. We also use
Matthews correlation coefficient (MCC) [40] and normalized mutual information
(NMI) [10] to measure the performance in long-tailed scenario.

4.2 Baselines

We embed and evaluate our models in multiple two-stage [27] long-tail learn-
ing methods, with different trending feature learning and classifier learning. The
involved methods cover various long-tail learning strategies, including data rebal-
ancing, loss balancing, feature space balancing, and decision boundary adjusting.
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Feature Learning. (1) Supervised Cross-Entropy (CE): a baseline back-
bone trained with vanilla cross-entropy loss. (2)Class-balance Sampler (CBS)
[52]: a balanced data sampler where each class has equal sampling probability. (3)
PaCo [9]: supervised contrastive learning model based on MoCo [16] It man-
ages to alleviate the sampling bias in contrastive learning. PaCo is currently
the state-of-the-art approach on the two mentioned benchmarks. Following the
original implementation, it is integrated with Balanced Softmax [46]. We repro-
duce the two-stage training version of PaCo and RandAug [8] is not applied in
classifier learning for a fair comparison with other features.
Classifier Learning. (1) BalSoftmax [46]: an adjusted Softmax-cross-entropy
loss for imbalanced learning, by adding log(nj) to logit of class j during train-
ing, where nj is the training sample size of class j. (2) Class-balance Sampler
(CBS) [52]: same as CBS in Feature Learning. (3) Cosine classifier (Co-
sine) [44,13]: predicting according to the cosine distance of features x and class
embeddings wi. Or namely, normalize the features x and weight vector wi of each
class i of a linear classifier: ŷ = argmini{cos⟨wi, x⟩} (4) M2M [30] transfers
head information to tail by resampling strategies. (5) RIDE [59] trains multi-
ple diversified expert classifier and dynamically select the best expert for each
sample. We use RIDE with two experts.

4.3 Implementation Details

We use 2-layered MAF [43] as the Flow Filter model. The Gaussian mixture cen-
ters are randomly sampled from N (0, 0.052) and the details of variance selection
please refer to Supp. Sec. 3. The model is trained with a SGD optimizer and the
decay rate for balancedness loss momentum η = 0.7. By default, the weight q in
the LMLE is 2.0, and 30% samples are filtered to Cluster-aided Classifiers in each
division step. We reproduce the baselines with decoupled strategy [27].
The detailed hyper-parameters of each dataset are listed in Supp. Sec. 5.

4.4 Results

We evaluate the methods on some baselines in Tab. 1, 2 and 3. Supp. Sec. 6
shows the detailed results on iNaturalist18. Our method promotes the accu-
racy of all the baselines. On state-of-art method PaCo [9]+BalSoftmax [46], we
achieve accuracy gain of 1.4%, 1.2%, 1.0% on the datasets respectively. Espe-
cially, on few-shot classes, the method brings over 1.5% accuracy bonus. Though
iNaturalist18 is a large-scale, realistic, and severely imbalanced dataset, DLSA
still brings 1% improvement with PaCo representations. DLSA also brings about
1% and 0.5% gain on MCC and NMI score.
Comparison of classifiers. In Tab. 1 and 2, we compare different classifier
learning models on same pretrained features (last 10 rows of Tab. 1 and rows
beginning with “CE+” in Tab. 2). On each dataset, all the classifier methods
use a same trained Flow Filter model since we incorporate two-stage training
in DLSA and the learning of Flow Filters only depends on the feature models.
DLSA brings comparable improvement on different classifiers (1.2%, 1.4%, 1.2%,
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Table 1: Results on ImageNet-LT [38] with ResNet-50 [17] backbone.

Feature Classifier Overall Many Medium Few MCC MNI

CE
BalSoftmax [46] 42.8 54.1 39.4 23.2 42.7 70.1
BalSoftmax [46] + DLSA 43.9 (+1.1) 54.5 41.0 24.0 43.8 70.3

CBS [52]
BalSoftmax [46] 42.2 55.8 38.3 17.6 42.2 69.9
BalSoftmax [46] + DLSA 43.1 (+0.9) 55.3 40.2 18.9 43.1 70.2

PaCo [9]

CBS [52] 54.4 61.7 52.0 42.5 54.4 74.5
CBS [52] + DLSA 55.6 (+1.2) 62.9 52.7 45.1 55.6 74.9

BalSoftmax [46] 54.9 67.0 50.1 38.0 54.9 74.9
BalSoftmax [46]+ DLSA 56.3 (+1.4) 67.2 52.1 40.2 56.1 75.4

Cosine [44,13] 55.7 64.9 53.0 39.5 55.7 75.2
Cosine [44,13] + DLSA 56.9 (+1.2) 64.6 54.9 41.8 56.8 75.7

M2M [30] 55.8 67.3 52.1 36.5 55.8 75.3
M2M [30] + DLSA 56.7 (+0.9) 68.0 52.8 38.2 56.6 75.7

RIDE [59] 56.5 67.3 53.3 37.3 56.5 75.6
RIDE [59] + DLSA 57.5 (+1.0) 67.8 54.5 38.8 57.5 75.9

0.9%, 1.0% on ImageNet-LT; 1.2%, 1.2%, 1.0% on Places-LT). The performance
improvement of our model mainly depends on the initial structure of the features.

Filter 1 Filter 2 Filter 3
30%

40%

50%

60%

70%

80%

CLIP PaCo CBS CE

Fig. 7: The accuracy of head-
tail separation of DLSA on
different feature models. The
threshold of head/tail is 50.

Feature model comparison and evaluation.
With DLSA, models with different feature mod-
els have comparable overall accuracy improvement
(1.1%, 0.9%, 1.4% with BalSoftmax classifier on
ImageNet-LT), but the improvement on few-shot
classes differs (0.8%, 1.3%, 2.2% with BalSoftmax
classifier). This is due to the different head-tail
separability of pretrained features with different
inductive biases. Thus, we compare the head-tail
separation accuracy of DLSA on the three feature
models. We analyze the samples filtered out by
Flow Filters and compute the accuracy of these
samples being tail classes. As discussed in Sec. 1,
an ideal separation with 100% accuracy will sig-
nificantly boost the long-tailed recognition. On
PaCo+BalSoftmax, 100% accurate head-tail sep-
aration brings ∼10% improvement. Fig. 7 shows the accuracy of head-tail classes
separation of models with different features. At all three Flow Filter layers, fea-
tures of PaCo show superior separability than feature models pretrained with CE
or CBS, thus PaCo has more potential of enhancing tail recognition. We also eval-
uate the DLSA on CLIP [45] features of ImageNet-LT. It achieves 65.2% overall
accuracy and over 75% separation accuracy, surpassing all baselines, showing the
potential of DLSA in the latest feature spaces. These also strongly support the
conclusion of [26], that contrastive learning generates a more balanced feature
space and enhances generalization capability. The positive correlation between
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Table 2: Results on Places-LT [38] with ImageNet [11]-pretrained ResNet-152 [17].

Feature Overall Many Medium Few MCC NMI

Joint (baseline) [27] 30.2 45.7 27.3 8.2 - -
cRT [27] 36.7 42.0 37.6 24.9 - -
τ -norm [27] 37.9 37.8 40.7 31.8 - -
LWS [27] 37.6 40.6 39.1 28.6 - -
MetaDA [23] 37.1 - - - - -
LFME [62] 36.2 39.3 39.6 24.2 - -
FeatAug [7] 36.4 42.8 37.5 22.7 - -
BALMS [46] 38.7 41.2 39.8 31.6 - -
RSG [57] 39.3 41.9 41.4 32.0 - -
DisAlign [65] 39.3 40.4 42.4 30.1 - -

CE+BalSoftmax [46] 37.8 40.0 40.2 28.5 37.7 58.1
CE+BalSoftmax [46]+ DLSA 39.0 (+1.2) 42.0 39.8 31.3 38.8 58.6

CE+Cosine [44,13] 37.0 39.2 37.7 31.4 36.8 57.8
CE+Cosine [44,13]+ DLSA 38.2 (+1.2) 39.7 39.2 33.3 38.1 58.3

CE+RIDE [59] 41.2 44.4 43.2 31.1 41.1 59.7
CE+RIDE [59]+ DLSA 42.2 (+1.0) 45.8 43.0 33.7 42.0 60.2

PaCo+BalSoftmax [9] 40.9 44.5 42.7 30.4 40.8 59.6
PaCo+BalSoftmax [9]+ DLSA 42.1 (+1.2) 44.4 44.6 32.3 42.0 59.7

𝑃𝑃 𝑥𝑥 < 𝛼𝛼 𝑃𝑃 𝑥𝑥 < 𝛼𝛼 𝑃𝑃 𝑥𝑥 < 𝛼𝛼

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑋𝑋4

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑋𝑋1⋃𝑋𝑋2⋃𝑋𝑋3⋃𝑋𝑋4

Fig. 8: Sample separation process of PaCo [9]+BalSoftmax [46] on ImageNet-
LT [38] test set. The red and blue points are head and tail samples respectively.
The grey boxes are Flow Filters and blue boxes are Cluster-aided Classifiers.

head-tail separability and performance gain indicates that our proposed DLSA
is a practical tool for feature analysis and evaluation with long-tailed data.

4.5 Visualization

We visualize our cascade division process in Fig. 8 via t-SNE [39]. We take the
PaCo+BalSoftmax as the example. Our method can effectively divide the sam-
ples of head and tail classes gradually. The samples filtered out to Cluster-aided
Classifiers (in the blue rectangles) are mainly tail samples, while the samples
passed to the next Flow Filters (in the grey rectangles) are mixed.

4.6 Ablation Study

We conduct ablation studies and look into the model components on the test set
of ImageNet-LT [38] with PaCo [9]+BalSoftmax [46] model, from the following
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Table 3: Results on iNaturalist-18 [56]
with ResNet-50 [17].

Feature Overall

LWS [27] 69.5
MetaDA [23] 67.6
Deep-RTC [61] 64.0
Remix [6] 70.5
FeatAug [7] 65.9
smDRAGON [49] 69.1
KCL [26] 68.6
MiSLAS [68] 71.6
DisAlign [65] 70.6
Hybrid-PSC [58] 70.4
FSR [66] 65.5
DRO-LT [51] 69.7
DiVE [18] 71.7

PaCo [9] 71.8
PaCo [9] + Ours 72.8 (+1.0)

Table 4: Ablation study on ImageNet-
LT [38] with PaCo [9]+BalSoftmax [46]
model and ResNet-50 [17] backbone.

Method Overall Many Medium Few

Full model 56.3 67.2 52.1 40.2

w/o LMLE 54.7 66.1 50.8 36.3
w/o Lbal 55.2 65.8 51.2 38.9
w/o Lpure 55.4 66.1 51.5 39.2

300 clusters 55.5 66.1 51.3 39.3
1000 clusters 55.1 66.5 50.3 39.6

2 blocks 55.4 66.3 51.2 39.3
4 blocks 55.8 66.5 51.7 39.2

aspects. The results are reported in Tab. 4. The extended ablation studies on
Places-LT are shown in Supp. Sec. 7.
Objectives. We evaluate the three objectives LMLE , Lbal, Lpure by removing
one of them. Removing any loss leads to a significant performance drop, which
indicates the necessity of all objectives. Among these losses, w/o Lpure shows
the least degradation since the pretrained backbones have moderately learned
intra-class similarity and Lpure aim to explicitly enhance the compactness.
Cluster number. Models with less/more clusters perform worse than default
500 clusters. Larger cluster number results in slow training and inference too.
Filter block number. Models with more Flow Filter blocks can separate head
and tail classes more finely. But excessive division operations lead to few training
samples for the clustering model and classifiers. Due to this trade-off, the default
model with 3 blocks outperforms that with 2 or 4 blocks.

5 Conclusions

In this paper, we propose to confront the head-to-tail bias by re-balancing the
label space and separating head and tail classes. We present a plug-and-play
module DLSA, which automatically adjusts the data distribution and constructs
new label space to facilitate the recognition. We embed DLSA in various types
of long-tailed recognition state-of-the-arts and boost their performances. We
observe that DLSA is also capable of evaluating the different feature learning
models. Our future work may extend to combining our paradigm with end-to-end
models and more tasks, e.g., object detection and segmentation.
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