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Abstract. We introduce Few-Shot Video Object Detection (FSVOD)
with three contributions to real-world visual learning challenge in our
highly diverse and dynamic world: 1) a large-scale video dataset FSVOD-
500 comprising of 500 classes with class-balanced videos in each cate-
gory for few-shot learning; 2) a novel Tube Proposal Network (TPN) to
generate high-quality video tube proposals for aggregating feature rep-
resentation for the target video object which can be highly dynamic;
3) a strategically improved Temporal Matching Network (TMN+) for
matching representative query tube features with better discriminative
ability thus achieving higher diversity. Our TPN and TMN+ are jointly
and end-to-end trained. Extensive experiments demonstrate that our
method produces significantly better detection results on two few-shot
video object detection datasets compared to image-based methods and
other naive video-based extensions. Codes and datasets are released at
https://github.com/fanq15/FewX.
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1 Introduction

We ask the following question: Given a bunch of videos, how can we index and
localize all novel objects of interest as video clips? See Figure 1.

This problem is becoming increasingly essential with massive video collec-
tions in this media era: movies, YouTube videos, TikTok streaming videos,
surveillance videos, just to name a few. The video objects of interests can
be highly novel, often personalized, and thus are not covered by any existing
datasets. Marvel fans may want to collect all Iron Man or Hulk clips from all
Marvel movies, while warfare collectors want to create a TikTok video consisting
of tank clip collections from war movies. We may not even know which videos
contain the interested objects.

No existing tasks or solutions can solve this real-world challenge. Notably,
multiple object tracking [13,90], image/video object detection [36,96,3,88] are all
restricted in fixed and limited training classes. Single object tracking [5,67] can
track new classes, but it requires user-provided template for every video and can
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Fig. 1. Given only a few support objects of interest, our FSVOD detects all objects of
the same category in query videos. Note that FSVOD enables object indexing/retrieval
in a bunch of query videos to extract video clips containing the target objects.

only track the target template object. Few-shot learning seems a good candidate
solution. But existing few-shot object detection [134,31] and few-shot classi-
fication [58,114] are specifically designed for still images and they will produce
numerous false positive results in videos. Few-shot video classification [10,146,55]
does not target at instance recognition.

This real-world challenge motivates few-shot video object detection (FSVOD):
given only a few support images of the target object in an unseen class, FSVOD
detects all the objects belonging to the same class in a given query video. The
given support images can be arbitrary objects of interest, and FSVOD works on
arbitrary videos for indexing and localization. The key to successful FSVOD is
simultaneously modeling both high dynamics and high diversity of our dynamic
and diverse world, while other existing tasks can only contribute either high dy-
namic or high diversity, as summarized in Table 1, and thus falling short of the
real-world challenge.

The technical contributions of FSVOD, namely, Temporal Proposal Network
(TPN) for high object dynamics and Temporal Matching Network (TMN+) for
high object diversity, will be detailed. The core idea is to perform temporal
matching between the tube-aggregated query features and supports, which en-
ables high-quality detection based on the representative tube features and elimi-
nates ghost objects (false positive predictions) which heavily suffers the few-shot
image object detection methods.

The other contribution of this paper consists of a large-scale dataset that
enables new research on few-shot video object detection. Our dataset contains
500 classes with a small and balanced number of high-quality videos in each
class. The numerous classes with class-balanced videos enable the trained model
to learn a general relation metric for novel classes. Note that this dataset con-
tributes not only as the first benchmark for FSVOD, but also as a useful bench-
mark for other important vision tasks, such as multi-object tracking and video
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Table 1. Comparing FSVOD and relevant computer vision tasks in terms of
dynamic and diversity capabilities: detecting box for novel object classes and/ormultiple
objects, and whether temporal information is considered. Number of ‘+’ indicates how
diversity each task can contribute. ‘S.A.’ means scene adaptation.

Task Dyn. Div. Box Nov. Mul. Temp. S.A.

Image Object Detection (IOD) no + ✓ ✗ ✓ ✗ ✓

Video Object Detection (VOD) yes + ✓ ✗ ✓ ✓ ✓

Multiple Object Tracking (MOT) yes + ✓ ✗ ✓ ✓ ✗

Single Object Tracking (SOT) yes + ✓ ✓ ✗ ✓ ✗

Few-Shot Classification (FSC) no ++ ✗ ✓ ✓ ✗ ✓

Few-Shot Object Detection (FSOD) no +++ ✓ ✓ ✓ ✗ -✓
Few-Shot Video Object Detection yes +++ ✓ ✓ ✓ ✓ ✓

object detection which are still in lack of a well-constructed, class-balanced video
benchmark on par in the number of classes as FSVOD-500.

2 Related Work

The FSVOD task is related to few-shot learning, object detection and video
understanding. Table 1 summarizes its relationship with closely related tasks.
Few-Shot Classification (FSC). Optimization-based works learn task-agnostic
knowledge on model parameters [35,4,65] for fast adaptation to new tasks on lim-
ited training data, using only a few gradient update steps. Some works [42,117]
hallucinate new images for novel classes from limited labeled data. Metric-based
methods exploit a weight-shared network [58] to extract features of the support
and query images before feeding them to a transferable distance metric. Such
matching strategy [114,137,130,104] captures inherent variety between supports
and queries irrespective of classes and thus can be directly applied for classifying
novel classes.
Few-Shot Object Detection (FSOD). With encouraging progress made
in the few-shot classification, few-shot learning has continued to contribute to
important computer vision tasks [26,84,48,39,79,70,30] at a fast pace especially
for object detection [134,92,118]. In LSTD [11] the gap between the source and
target domain is minimized. RepMet [53] learns the multi-modal distribution
of the training classes in the embedding space. FR [50] exploits a meta feature
learner to quickly adapt to novel classes. Some works exploit semantic relation
reasoning [144], restore negative information [132], feature hallucination [140] or
other techniques [105,47,138,72,66,32,69,129,116,122,126] to facilitate few-shot
object detection. All of the above methods however require fine-tuning on novel
classes. In FSOD [31] the authors proposed to learn a matching metric with
attention RPN and multi-relation detector to detect novel classes.

Our FSVOD extends FSOD task to the temporal domain, with the technical
approach motivated by the matching network [114] and FSOD network [31] to
detect novel classes without fine-tuning.
Image Object Detection (IOD). Existing object detection methods can
be mainly categorized to the two-stage approach [36,96,73] and one-stage ap-
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proach [74,94,95,77,76,139], based on whether a region-of-interest proposal step
is used. The two-stage approach was pioneered by R-CNN [37]. In recent years,
this approach has been improved by various excellent works and achieved re-
markable performance [43,103,8,9,14,71,1]. The one-stage approach on the other
hand discards the proposal generation procedure in lieu of higher computa-
tional efficiency and faster inference speed with anchor-based [60,101,147,141]
or anchor-free detectors [64,80,143,27,133,111,78,59].

Video Object Detection (VOD). Video object detection aims at detect-
ing objects of pre-defined classes in a given video. Some enhance the quality
of per-frame features by integrating temporal information locally [3,24,124,115],
globally [22,102,121] or both [88,119,120,127,12], while others follow the “se-
quential detection tracking” paradigm [34,148,149,150,51,107] to associate and
rescore detected boxes on individual frames. The above work in intensive su-
pervision and cannot be applied readily to detect novel classes. VOD variants
include e.g., video object segmentation (VOS) [91,128], video instance segmen-
tation (VIS) [131] and video panoptic segmentation (VPS) [57].

Both IOD and VOD are restricted to pre-defined classes making it hard for
them to detect novel classes. FSVOD eliminates this restriction with its detection
generality on novel classes in videos.

Single Object Tracking (SOT). Given an arbitrary target with its location
in the first frame, single object tracking aims to infer its location in subse-
quent frames of the given video. Thanks to the construction of new benchmark
datasets [29,123] and annually held tracking challenges [63,61,62], we have wit-
nessed rapid performance boost in the last decade. The correlation filter based
trackers [17,19,20,46] achieve superb performance with efficient inference speed.
The recent emerging siamese network based trackers [5,40,68,67,45,109,112] have
drawn much attention due to their well-balanced performance and efficiency.

Although SOT models can track unseen objects, they heavily rely on the
provided template and can only track one target object. The online tracking
trackers [6,38,18,7,20,17,19,16,83] can be finetuned/updated on the first frame,
but they focus on tracking single object with the video-specific annotated first
frame. On other hand, our FSVOD focuses on detecting arbitrary novel ob-
jects in videos based on given video-agnostic support images even from other
images/videos and can be reused for all input videos.

Multiple Object Tracking (MOT). This task [113,82] requires simultaneous
prediction of spatio-temporal location and classification of video objects into pre-
defined classes. Current mainstream trackers [2,81,13,136,142,56,97,108,33,135]
adopt tracking-by-detection (TBD) by first performing per-frame detection and
then associating the detected boxes in the temporal dimension. Some works lever-
age trajectories or tubes to capture motion trails of targets [90,52,100,145,89].

While MOT models can simultaneously track multiple objects, they cannot
generalize to novel classes. FSVOD can detect novel classes in videos. Our techni-
cal approach is inspired by these previous methods, especially tube-based MOT
and VOD methods, e.g., CPN [107] and CTracker [90], which are restricted in
limited training classes.
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3 Proposed Method

Few-shot video object detection aims at detecting novel classes unseen in the
training set. Given a support image containing one object of the support class
c and a query video sequence with T frames, the task is to detect all the objects
belonging to the support class c in every frame. Suppose the support set contains
N classes with K samples for each class, the problem is defined as N -way K-shot
detection. Specifically, during inference, if all the support classes are exploited
for detection, it is dubbed full-way evaluation.

3.1 Overview

Technically, it is non-trivial to transfer few-shot learning [58,98,35] to the video
object detection domain for simultaneously modeling the dynamic and diverse
world. Few-shot learning requires a large-scale, class-balanced dataset with nu-
merous base classes to train a class-agnostic metric capable of generalizing to
novel classes [99,31,70]. Besides, videos present additional data challenges caused
by e.g., motion blur, occlusion and deformation of objects, making infeasible
straightforward extension of few-shot image to few-shot video object detection
without adequate temporal consideration.

This paper extends the traditional video object detection to detect novel
classes in a few-shot learning setting which is not a straightforward problem. We
propose a novel tube-based few-shot video object detection model for detecting
novel classes in a given video, without any fine-tuning or retraining. We make
the following contributions:

We first model dynamic objects by generating temporal tubes using our novel
Tube Proposal Network (TPN) exploiting spatial adjacency and appearance sim-
ilarity in the neighboring frames. Specifically, by introducing novel inter-frame
proposals to detect objects in consecutive frames, TPN can capture potential
objects in the query video while filtering out background and ghost objects (the
false positive objects detected in isolated frames). We argue that the aggregated
features across frames can better represent the target objects which leads to
significant improvement on the detection performance.

Then we model diversity of objects using subsequent Temporal Matching
Network (TMN+), which is specially designed and strategically improved to
match support features and the aggregated query features from temporal tube
proposals generated by TPN. Our proposed TMN+ effectively leverages the rep-
resentative tube features by bridging the gap between training and inference via
our novel temporal alignment branch. Furthermore, a new support classifica-
tion loss is used to learn a highly discriminative feature, and a label-smoothing
regularization is used for better generalization on novel unseen classes. Conse-
quently, our TMN+ boosts matching performance on novel classes without extra
computation overhead at inference.

The TPN and TMN+ are integrated into one unified network and jointly
optimized in an end-to-end manner to simultaneously handle high dynamics and
diversity in visual object detection.



6 Qi Fan et al.

TMN

Tube

C
N
N

GT box

A

C
N
N

C
N
N A

TPN

Query Video

Support Images

Lmatch

Lbox

Lscls

2 Frames

M Frames

TMN+

𝒬!"

𝒬#$!"%"

𝒬!&"

𝒮

Shared Weights

Temporal Alignment Branch

Query Branch

Support Branch

A Feature Aggregation

GT box

RoIAlign

RoIAlign

RoIAlign

Predictions

Query Video

TPN

Camel 67%

(a) Predict tubes

(b)
Tube feature
aggregation

(c) Match
with support

(d) Distribute
to all frames

Fig. 2. Network architecture at training (left) and testing (right) stages. The query
video and support images are processed by the weight-shared backbone. The query
branch only processes two query images. The temporal alignment branch (TAB) is
used for query feature alignment, and a classification module is introduced to produce
representative support features. For clarity we show the detection on a single object,
while our model can perform multi-object detection with corresponding tubes.

3.2 Few-Shot Video Object Detection Network

Figure 2 shows the network architecture. We propose a novel temporal detection
network that exploits tubes to locate and represent objects in the temporal
domain, which are then matched with support features.

Tube Proposal Network In image object detection, region proposal network
RPN [96] has become a classical module to produce proposals for potential ob-
jects while filtering out the background. These proposals are fed to the R-CNN
head for finer classification and localization.

We extend RPN to the temporal domain to generate tube proposals to
locate and represent objects across frames. The resulting network is our novel
tube proposal network (Figure 3) which exploits the high likelihood that the same
object in neighboring frames tend to have similar location and appearance.

To utilize the location cue in adjacent frames, we propose the novel inter-
frame proposals by feeding the same proposals to two adjacent frames. Note
that proposals usually serve as a coarse prediction prior for later finer regres-
sion. The predicted boxes regressed from the same proposals indicate the same
objects and therefore inter-frame proposals can associate objects across frames.
However, it is also possible that objects with large motion may locate far away
in adjacent frames, or the locations are occupied by other objects in the next
frame. To address this problem, we adopt the deformable RoIAlign [15] operator
to enlarge the search region for the target objects by adapting the sampling bins
conditioned on the input feature. To exploit the appearance cue in neighboring
frames to address the second problem, we verify the same object by predicting
the identification score of the predicted boxes regressed from the same proposal.

Specifically, given two adjacent frames {I1, I2}, we first use RPN to generate
proposals for each frame and collect both frame proposals to construct the pro-
posal pool. Each proposal pi in the proposal pool is simultaneously fed to the
two frames to extract proposal features {F i

1,F i
2} with the deformable RoIAlign

operator. These proposal features from individual frames are concatenated as
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Fig. 3. Tube Proposal Network (TPN) and the loss function. The ∗gt is the ground-
truth label for the corresponding prediction, Lcls and Lid are both cross-entropy loss
and Lreg is the smooth L1 loss. Nobj and Nreg are respectively the number of proposals
and foreground proposals.

F i
cat = concat(F i

1,F i
2), which is then fed to the following multilayer perceptron

(MLP) layer to perform objectness classification {si1, si2}, box regression {bi1, bi2}
for each frame, and identify verification vi. The 2-frame tube prediction is trained
with the TPN loss Ltpn, as shown in Figure 3.

During inference, the TPN needs to connect all frames in the given video
by repeating the 2-frame tube prediction. Consider the 3-frame case where the
T -frame (T > 3) can be generalized 1: given {I1, I2, I3}, we first send {I1, I2} to
the model to generate a 2-frame tube {b1, b2}. Then we feed the pre-computed
tube box b2 to {I2, I3} as the inter-frame proposal to generate the tube box b3 for
frame I3 to construct another 2-frame tube {b2, b3}. We can construct a 3-frame
tube {b1, b2, b3} by linking {b1, b2} and {b2, b3} through the inter-frame proposal
b2. The overlapped frame I2 is used to verify the same objects between two frame
pairs and its feature are reused in the process to avoid repeating computation as
in CTracker [90]. Thus, we can sequentially detect tube boxes for all the frames
and generate tube proposals.

Temporal Matching Network After obtaining tube proposals, we extract
and aggregate tube features and compare them with support features using a
matching network, where the matching results are then distributed to the tube
proposals in all frames. We re-design the matching network (MN) in the temporal
domain to take advantage of tube features. Consequently, our discriminative
temporal matching network TMN+ and TPN which share backbone features
are jointly trained for better optimization. Below we detail the design rationale
on a single instance/track i, starting from MN, TMN and finally TMN+, and it
is easy to apply them on multiple objects of different classes.

MN. From {I1, I2}, the query branch of backbone extracts query features
{Qi

1,Qi
2} for each proposal pi of instance i with RoIAlign operator. The support

branch extracts the support features S in the ground-truth boxes of the support
images. The MN then computes the distance between Q = 1

2 (Q
i
1 + Qi

2) and S
and classifies Q to the nearest support neighbor. We adopt the multi-relation
head with contrastive training strategy from FSOD [31] as our matching network

1 The operations are parallel conducted for each instance/track i and we omit the
instance notion for simplicity.
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(MN) for its high discriminative power. Refer to the supplementary material for
more details about its architecture.

TMN. The above MN is however designed for image object detection and
is unsuitable to be applied in the temporal domain. The main problem is the
misalignment between training and inference for the query features Q: In the
training stage, Qtrain = 1

2 (Q
i
1 + Qi

2) only involves the proposal feature in two
frames, limited by the GPU memory and the joint training with TPN. While in
the inference stage, Qtest =

1
T (Q

i
1+Qi

2+ ...+Qi
T ) is derived from all the frames

in the tube proposal. This misalignment can produce bad matching result and
overall performance degradation.

To bridge this training and inference gap, we propose a novel temporal match-
ing network (TMN) by introducing a temporal alignment branch (TAB)
for query feature alignment. Specifically, for proposal pi of the target object i,
Qtrain = 1

2 (Q
i
1+Qi

2) involves two frames {I1, I2}, and the TAB randomly selects
images2 from remaining frames {I3, I4, ..., IT } and extracts the aligning features
Qa = 1

M (Qi
3 + Qi

4 + ... + Qi
M ) for the target object i, where M is the number

of selected aligning query images. Then we generate the aligned query feature
Qi

ad = αQi
train + (1 − α)Qi

a as the feature aggregation to represent the target
object and perform matching with supports in the training stage. Our TMN thus
bridges this gap without disrupting the design of TPN and without introducing
additional computational overhead by removing TAB at inference time.

The loss function is Ltmn = Lmatch+Lbox, where Lmatch is the cross-entropy
loss for binary matching and Lbox is the smooth L1 loss for box regression.

TMN+. To enhance discriminative ability, TMN+ incorporates label-smoothing
regularization [106] into TMN for better generalization and a jointly optimized
support classification module for more representative feature.

We first introduce label smoothing to the matching loss Lmatch of TMN,
which is widely used to prevent overfitting in the classification task [87,110]
by changing the ground-truth label yi to y∗i = (1 − ε)yi +

ε
β , where ε is the

constant smoothing parameter and β is the number of classes. This prevents the
model from being overconfident to the training classes and is therefore inherently
suitable for the few-shot learning models focusing on the generalization on novel
classes. Then, we add a support classification module (classifier) to the support
branch to enhance the intra-class compactness and inter-class separability in the
Euclidean space and thus generate more representative features for matching in
TMN. We adopt cross-entropy loss as its loss function Lscls.

During training, the TPN and TMN+ are jointly and end-to-end optimized
with the weight-shared backbone network by integrating all the aforementioned
loss functions:

L = λ1Ltpn + λ2Ltmn + λ3Lscls (1)

where λ1, λ2, and λ3 are hyper-parameter weights to balance the loss functions
and are set to 1 in our experiments.

2 The random selection can be regarded as data augmentation to imitate the imperfect
tube features during inference.
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4 FSVOD-500 Dataset

There exist a number of public datasets with box-level annotations for differ-
ent video tasks: ImageNet-VID [23] for video object detection; LaSOT [29],
GOT-10k [49], Youtube-BB [93], and TrackingNet [86] for single object tracking;
MOT [85], TAO [21], Youtube-VOS [128] and Youtube-VIS [131] for multi-object
tracking. However, none of these datasets meet the requirement of our proposed
few-shot video object detection task. Some datasets (Youtube-BB [93], Track-
ingNet [86], ImageNet-VID [23], Youtube-VOS [128] and Youtube-VIS [131])
have many videos but limited classes, whereas a sufficiently large number of
base classes is essential to few-shot learning. On the other hand, although other
datasets (GOT-10k [49] and TAO [29]) contain diverse classes, not all instances
of the same target class are annotated in a video, and therefore are not suitable
for the few-shot task. Last but not least, all of these datasets are not specifically
designed for few-shot learning whose train/test/val sets are class-overlapping
and cannot be used to evaluate the generality on unseen classes.

Thus, we design and construct a new dataset for the development and eval-
uation of few-shot video object detection task. The design criteria are:

– The dataset should consist of highly-diversified classes for learning a
general relation metric for novel classes.

– The dataset should be class-balanced where each class has similar number
of samples to avoid overfitting to any classes, given the long-tailed distribu-
tion of many novel classes in the real world [41].

– The train/test/val sets should contain disjoint classes to evaluate the gen-
erality of models on novel classes.

To save human annotation effort as much as possible, rather than building our
dataset from scratch, we exploit existing large-scale video datasets for supervised
learning, i.e., LaSOT [29], GOT-10k [49], and TAO [21] to construct our dataset
subject to the above three criteria. The dataset construction pipeline is consist
of dataset filtering, balancing and splitting.
Dataset Filtering. Note that the above datasets cannot be directly used since
they are only partially annotated for tracking task: although multiple objects
of a given class are present in the video, only some or as few as one of them is
annotated while the others are not annotated. Thus, we filter out videos with
non-exhaustive labels while keeping those with high-quality labels covering all
objects in the same class (target class). We also remove videos containing ex-
tremely small objects which are usually in bad visual quality and thus unsuitable
for few-shot learning. Note that exhaustive annotation for all possible classes in
such a large dataset is expensive and infeasible [21,41]. Therefore, only the tar-
get classes are exhaustively annotated for each video while non-target classes are
categorically ignored.
Dataset Balancing. It is essential to maintain good data balancing in the few-
shot learning dataset, so that sufficient generality to novel classes can be achieved
without overfitting to any dominating training classes. Thus, we remove ‘person’
and ‘human face’ from the dataset which are in massive quantities (and they have
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Table 2. Dataset statistics of FSVOD-500 and FSYTV-40. “Class Overlap” denotes
the class overlap with MS COCO [75] dataset.

FSVOD-500 FSYTV-40
Train Val Test Train Test

label FPS 1 1 1 6 6
# Class 320 80 100 30 10
# Video 2553 770 949 1627 608
# Track 2848 793 1022 2777 902
# Frame 60432 14422 21755 41986 19843
# Box 65462 15031 24002 66601 27924

Class Overlap Yes No No Yes No
Exhaustive Only target classes All classes

already been extensively studied in many works and tasks [28,25,125,54]).Then,
we manually remove easy samples for those classes with more than 30 samples.
Finally, each class in our dataset has at least 3 videos and no more than 30.
Dataset Splitting. We summarize a four-level label system (shown in the sup-
plementary material) to merge these datasets by grouping their leaf labels with
the same semantics (e.g., truck and lorry) into one class. Then, we select third-
level node classes similar to the COCO [75] classes and exploit their leaf node as
the training classes. The remaining classes are very distinct from COCO classes,
and thus used to construct the test/val sets by randomly splitting the node
classes. In this way, we can take advantage of the pre-training model on COCO
dataset, while the test/val classes are rare novel classes and thus complying to
the few-shot setting. We follow three guidelines for dataset split:
G1: The split should be in line with the few-shot learning setting, i.e., train
set should contain common classes in the real world, while test/val sets should
contain rare classes. G2: To take advantage of pre-training on other datasets,
the train set should have a large overlap with existing datasets while the test/val
sets should have largely no overlap. G3: The train and test/val sets should have
different node classes to evaluate the generality on novel classes in a challenging
setting to avoid the influence of similar classes across sets, e.g., if the train set
has ‘Golden Retriever’, it is much easier to detect ‘Labrador Retriever’ in the
test set, which is undesirable.

Consequently, FSVOD-500 is the first benchmark specially designed for
few-shot video object detection in evaluating the performance of a given model
on novel classes.

5 Experiments

We conduct extensive experiments to validate the effectiveness of our proposed
approach. Since this is the first paper on FSVOD, we compare with state-of-the-
art (SOTA) methods of related tasks by adapting them to the FSVOD task.
Training. Our model is trained on four GeForce GTX 1080Ti GPUs using
the SGD optimizer with 45,000 iterations. The initial learning rate is set to
0.002 which decays by a factor of 10 respectively in 30,000 and 40,000 itera-
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tions. Each GPU contains five cropped support images, two query images and
M cropped aligning query images in the same video, where M is randomly sam-
pled from [1, 10]. We use ResNet50 [44] as our backbone which is pre-trained
on ImageNet [23] and MS COCO [75]3 for stable low-level features extraction
and better convergence. The model is trained with 2-way 5-shot contrastive
training strategy proposed in FSOD [31]. Other hyper-parameters are set as
α = 0.5, ε = 0.2, β = 2 in our experiments.
Evaluation. We adopt the full-way 5-shot evaluation (exploit all classes in the
test/val set with 5 images per class as supports for evaluation) in our experiments
with standard object detection evaluation metrics, i.e., AP, AP50, and AP75. The
evaluations are conducted 5 times on randomly sampled support sets and the
mean and standard deviation are reported. Refer to the supplemental material
for more training and evaluation details.
FSYTV-40. To validate model generalization on datasets with different char-
acteristics, we construct another dataset built on Youtube-VIS dataset [131] for
the FSVOD task. FSYTV-40 is vastly different from FSVOD-500 with only 40
classes (30/10 train/test class split following the same dataset split guidelines
above, with instances of all classes are exhaustively annotated in each video),
more videos in each class and more objects in each video. Table 4 tabulates the
detailed statistics of both datasets.

5.1 Comparison with Other Methods

With no recognized previous work on FSVOD, we adapt representative models
from related tasks to perform FSVOD, such as image object detection (Faster
R-CNN [96], and FSOD [31]), video object detection (MEGA [12] and RDN [24])
and multiple object tracking (CTracker [90], and FairMOT [136], and Center-
Track [142]). Only FSOD model can be directly applied frame-by-frame to per-
form FSVOD. For others, we exploit their models to generate class-agnostic
boxes and adopt the multi-relation head trained in the FSOD [31] model to
evaluate the distance between the query boxes and supports. We first perform
comparison on FSVOD-500, and then generalize to FSYTV-40 (Table 3).
Comparison with IOD-based methods. FSOD serves as a strong base-
line with its high recall of attention-RPN and powerful generalization of multi-
relation head. With the same matching network, Faster R-CNN produces inferior
performance due to the lower recall of its generated boxes. With the represen-
tative aggregated query feature from TPN and discriminative TMN+ in the
temporal domain, our FSVOD model outperforms FSOD by a large margin.
Comparison with VOD-based methods. VOD-based methods operate sim-
ilarly to IOD-based methods in its per-frame object detection followed by match-
ing with supports and thus both suffer from noisy proposals and less powerful
features. Interestingly, we find that VOD-based methods have a worse perfor-
mance because they produce excessive proposals which heavily burden the sub-
sequent matching procedure despite their higher recalls.

3 There is no overlap between MS COCO and the val/test sets of both FSVOD-500
and FSYTV-40 datasets.
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Table 3. Experimental results on FSVOD-500 and FSYTV-40 test set for
novel classes with the full-way 5-shot evaluation.

FSVOD-500 FSYTV-40
Method Tube AP AP50 AP75 AP AP50 AP75

FR-CNN [96] ✗ 18.2±0.4 26.4±0.4 19.6±0.5 9.3±1.4 15.4±1.7 9.6±1.7

FSOD [31] ✗ 21.1±0.6 31.3±0.5 22.6±0.7 12.5±1.4 20.9±1.8 13.0±1.5

MEGA [12] ✗ 16.8±0.3 26.4±0.5 17.7±0.3 7.8±1.1 13.0±1.9 8.3±1.1

RDN [24] ✗ 18.2±0.4 27.9±0.4 19.7±0.5 8.1±1.1 13.4±2.0 8.6±1.1

CTracker [90] ✓ 20.1±0.4 30.6±0.7 21.0±0.8 8.9±1.4 14.4±2.5 9.1±1.3

FairMOT [136] ✓ 20.3±0.6 31.0±1.0 21.2±0.8 9.6±1.6 16.0±2.2 9.5±1.4

CenterTrack [142] ✓ 20.6±0.4 30.5±0.9 21.9±0.4 9.5±1.6 15.6±2.0 9.7±1.3

Ours ✓ 25.1±0.4 36.8±0.5 26.2±0.7 14.6±1.6 21.9±2.0 16.1±2.1

Comparison with MOT-based methods. MOT-based methods have a sim-
ilar detection mechanism to our approach, by first generating tubes for query
objects and representing them with the aggregated tube features, followed by
matching between query tube features and support features. Thus, even with
much lower recalls (∼70.0% v.s. ∼80.0%), they still have better performance
than VOD-based methods by taking advantage of temporal matching. However,
our approach still outperforms MOT-based methods by a significant margin
leveraging our jointly optimized TPN and TMN+ with more representative fea-
tures and powerful matching network.

Generalization on FSYTV-40 dataset. This dataset is very different from
FSVOD-500 with the former having significantly less classes but more videos in
each class, more tracks in each video, and higher annotation FPS. Although our
method still outperforms other methods on this dataset, a substantial perfor-
mance degradation in comparison with FSVOD-500 is resulted, which is caused
by the much reduced class diversity for the matching network to learn a gen-
eral relation metric for novel classes. To verify this, we train our model on the
FSVOD-500 train set and evaluate it on the FSYTV-40 test set4. It can promote
the performance from 14.6 to 17.8 AP. The resulting large performance boost
again validates the importance of high diversity of training classes, one of the
desirable properties of our FSVOD-500 for few-shot video object learning.

5.2 Ablation Studies

Table 4 tabulates the ablation studies on the proposal box generation network
and matching (classification) network. Compared to RPN, our proposed TPN
improves the performance by 3.7 AP with the same matching network. Although
RPN and TPN have similar recall performance (76.2% vs 76.8%), TPN has a bet-
ter classification performance due to its discriminative and aggregated temporal
features, and therefore producing better detection and matching performance.

For the matching network, the RN (Relation Network [130]) based baseline
performs worst which is limited by its weak matching ability. Replacing RN

4 There is no overlapping or similar classes between them.
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Table 4. Ablation experimental results on FSVOD-500 val set for 80 novel
classes with the full-way 5-shot evaluation. “LSR” denotes label-smoothing regulariza-
tion and “SCM” denotes support classification module.

Box Matching AP AP50 AP75

RPN
RN 10.1±0.5 14.0±0.6 11.1±0.7

MN 19.5±0.9 27.4±1.2 21.8±1.1

TPN

MN 23.2±1.2 32.7±1.5 25.6±1.5

TMN 26.4±1.5 37.2±1.4 29.5±1.6

TMN w/ LSR 27.9±1.3 39.6±1.2 30.8±1.5

TMN w/ SCM 29.4±0.8 41.8±1.1 31.9±1.2

TMN+ 30.0±0.8 43.6±1.2 32.9±1.1

by the more powerful multi-relation MN [31] can significantly improve the per-
formance. When cooperating with TPN, our proposed TMN outperforms MN
by 3.2 AP in the temporal domain using aligned query features. The improved
TMN+ reaches 30.0 AP performance by capitalizing on better generalization and
representative feature, which is optimized with the label-smoothing regulariza-
tion and support classification module, bringing about respectively 1.5 and 3.0
performance increase. Note that our support classification module is fundamen-
tally different from the meta-loss in Meta R-CNN [129] which requires training
on novel classes to avoid prediction ambiguity in object attentive vectors, while
our method targets at generating more representative features in the Euclidean
space to generalize better on novel classes without any fine-tuning.

5.3 Advantages of Temporal Matching

Temporal matching has two substantial advantages over image-based matching:
Ghost Proposal Removal. Image-based matching suffers heavily from “ghost
proposals” which are hard background proposals with similar appearance to
foreground proposals. It is difficult to filter them out by the RPN in the spatial
domain due to appearance ambiguity, while much easier to distinguish in the
temporal domain due to their intermittent “ghost” or discontinuous appearances
across frames. Our TPN takes this advantage to get rid of ghost proposals and
thus obtains better detection performance.
Representative Feature. From the feature perspective, image-based matching
exploits proposal features from each query frame to match with supports indi-
vidually. Such independent query feature is inadequate in representing a target
video object, especially those in bad visual quality due to e.g., large deformation,
motion blur or heavy occlusion, thus is liable to bad comparison results in the
subsequent matching procedure and leading to bad predictions. In contrast, our
temporal matching aggregates object features across frames in the tube proposal
into a robust representative feature for the target video object, which helps the
subsequent matching procedure to produce better result.
Validation. We show quantitatively and qualitatively the above advantages of
our temporal matching. Specifically, we transform our tube-based matching to
the image-based matching by performing per-frame detection and matching dur-
ing inference. With the same trained model, the performance drastically drops
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Fig. 4. Qualitative 5-shot detection results on novel classes of FSVOD
dataset. Our tube-based approach successfully detects objects in novel classes, while
other methods miss or misclassify target objects or detect ghost objects.

from 30.0 to 25.8 after replacing tube-based feature by image-based feature. The
large performance gap indicates the effectiveness of tube-based matching in the
FSVOD task. In Figure 4, the image-based methods produce ghost proposals
and fails the target object matching, while our approach produces much better
performance without suffering from ghost proposals.

5.4 Object Indexing in Massive Videos

Our FSVOD task enables models properly solving the object indexing/retrieval
problem in massive videos, which is infeasible or extreme hard for other computer
vision tasks. Specifically, we retrieve video clips for the target support class if
there exists a detected box with the class score larger than 0.05. Thanks to the
full-way evaluation, our FSVOD actually performs indexing for every class in
the entire video set. We use the widely-used F1 score to evaluate the retrieval
performance. Our FSVOD model achieves 0.414 F1 score on FSVOD-500 test
set, while the classic few-shot object detection model [31] only obtains 0.339 F1

score because of its numerous false positive predictions in videos. More details
are in the supplementary material.

6 Conclusion

This paper proposes FSVOD for detecting objects in novel classes in a query
video given only a few support images. FSVOD can be applied in high diver-
sity/dynamic scenarios for solving relevant real-world problem that is infeasible
or hard for other computer vision tasks. We contribute a new large-scale, class-
balanced FSVOD dataset, which contains 500 classes of objects in high diversity
with high-quality annotations. Our tube proposal network and aligned match-
ing network effectively employ the temporal information in proposal generation
and matching. Extensive comparison have been performed to compare related
methods on two datasets to validate that our FSVOD method produces the best
performance. We hope this paper will kindle future FSVOD research.
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85. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: Mot16: A benchmark
for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016) 9

86. Muller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: Trackingnet: A
large-scale dataset and benchmark for object tracking in the wild. In: ECCV
(2018) 9

87. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In:
NeurIPS (2019) 8

88. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-
time memory networks. In: ICCV (2019) 1, 4

89. Pang, B., Li, Y., Zhang, Y., Li, M., Lu, C.: Tubetk: Adopting tubes to track
multi-object in a one-step training model. In: CVPR (2020) 4

90. Peng, J., Wang, C., Wan, F., Wu, Y., Wang, Y., Tai, Y., Wang, C., Li, J., Huang,
F., Fu, Y.: Chained-tracker: Chaining paired attentive regression results for end-
to-end joint multiple-object detection and tracking. In: ECCV (2020) 1, 4, 7, 11,
12

91. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-
Hornung, A.: A benchmark dataset and evaluation methodology for video object
segmentation. In: CVPR (2016) 4

92. Perez-Rua, J.M., Zhu, X., Hospedales, T.M., Xiang, T.: Incremental few-shot
object detection. In: CVPR (2020) 3



Few-Shot Video Object Detection 19

93. Real, E., Shlens, J., Mazzocchi, S., Pan, X., Vanhoucke, V.: Youtube-
boundingboxes: A large high-precision human-annotated data set for object de-
tection in video. In: CVPR (2017) 9

94. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: CVPR (2016) 4

95. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR (2017) 4
96. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object

detection with region proposal networks. In: NeurIPS (2015) 1, 3, 6, 11, 12
97. Sadeghian, A., Alahi, A., Savarese, S.: Tracking the untrackable: Learning to track

multiple cues with long-term dependencies. In: ICCV (2017) 4
98. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-

learning with memory-augmented neural networks. In: ICML (2016) 5
99. Sbai, O., Couprie, C., Aubry, M.: Impact of base dataset design on few-shot image

classification. In: ECCV (2020) 5
100. Shao, D., Xiong, Y., Zhao, Y., Huang, Q., Qiao, Y., Lin, D.: Find and focus:

Retrieve and localize video events with natural language queries. In: ECCV (2018)
4

101. Shen, Z., Liu, Z., Li, J., Jiang, Y.G., Chen, Y., Xue, X.: Dsod: Learning deeply
supervised object detectors from scratch. In: ICCV (2017) 4

102. Shvets, M., Liu, W., Berg, A.C.: Leveraging long-range temporal relationships
between proposals for video object detection. In: ICCV (2019) 4

103. Singh, B., Najibi, M., Davis, L.S.: Sniper: Efficient multi-scale training. In:
NeurIPS (2018) 4

104. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
NeurIPS (2017) 3

105. Sun, B., Li, B., Cai, S., Yuan, Y., Zhang, C.: Fsce: Few-shot object detection via
contrastive proposal encoding. In: CVPR (2021) 3

106. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR (2016) 8

107. Tang, P., Wang, C., Wang, X., Liu, W., Zeng, W., Wang, J.: Object detection in
videos by high quality object linking. IEEE TPAMI (2019) 4

108. Tang, P., Wang, X., Bai, X., Liu, W.: Multiple instance detection network with
online instance classifier refinement. In: CVPR (2017) 4

109. Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In:
CVPR (2016) 4

110. Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.:
On mixup training: Improved calibration and predictive uncertainty for deep neu-
ral networks. In: NeurIPS (2019) 8

111. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: ICCV (2019) 4

112. Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.: End-to-end
representation learning for correlation filter based tracking. In: CVPR (2017) 4

113. Valmadre, J., Bewley, A., Huang, J., Sun, C., Sminchisescu, C., Schmid, C.: Local
metrics for multi-object tracking. arXiv preprint arXiv:2104.02631 (2021) 4

114. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks
for one shot learning. In: NeurIPS (2016) 2, 3

115. Wang, S., Zhou, Y., Yan, J., Deng, Z.: Fully motion-aware network for video
object detection. In: ECCV (2018) 4

116. Wang, X., Huang, T.E., Darrell, T., Gonzalez, J.E., Yu, F.: Frustratingly simple
few-shot object detection. In: ICML (2020) 3



20 Qi Fan et al.

117. Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from
imaginary data. In: CVPR (2018) 3

118. Wang, Y.X., Ramanan, D., Hebert, M.: Meta-learning to detect rare objects. In:
CVPR (2019) 3

119. Woo, S., Kim, D., Cho, D., Kweon, I.S.: Linknet: Relational embedding for scene
graph. In: NeurIPS (2018) 4

120. Wu, C.Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl, P., Girshick, R.: Long-
term feature banks for detailed video understanding. In: CVPR (2019) 4

121. Wu, H., Chen, Y., Wang, N., Zhang, Z.: Sequence level semantics aggregation for
video object detection. In: ICCV (2019) 4

122. Wu, J., Liu, S., Huang, D., Wang, Y.: Multi-scale positive sample refinement for
few-shot object detection. In: ECCV (2020) 3

123. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: CVPR
(2013) 4

124. Xiao, F., Jae Lee, Y.: Video object detection with an aligned spatial-temporal
memory. In: ECCV (2018) 4

125. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification
feature learning for person search. In: CVPR (2017) 10

126. Xiao, Y., Marlet, R.: Few-shot object detection and viewpoint estimation for
objects in the wild. In: ECCV (2020) 3

127. Xu, J., Cao, Y., Zhang, Z., Hu, H.: Spatial-temporal relation networks for multi-
object tracking. In: ICCV (2019) 4

128. Xu, N., Yang, L., Fan, Y., Yang, J., Yue, D., Liang, Y., Price, B., Cohen, S.,
Huang, T.: Youtube-vos: Sequence-to-sequence video object segmentation. In:
ECCV (2018) 4, 9

129. Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L.: Meta r-cnn : Towards
general solver for instance-level low-shot learning. In: ICCV (2019) 3, 13

130. Yang, F.S.Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to
compare: Relation network for few-shot learning. In: CVPR (2018) 3, 12

131. Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: ICCV (2019) 4, 9, 11
132. Yang, Y., Wei, F., Shi, M., Li, G.: Restoring negative information in few-shot

object detection. In: NeurIPS (2020) 3
133. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: Point set representation

for object detection. In: ICCV (2019) 4
134. Yang, Z., Wang, Y., Chen, X., Liu, J., Qiao, Y.: Context-transformer: tackling

object confusion for few-shot detection. In: AAAI (2020) 2, 3
135. Yu, F., Li, W., Li, Q., Liu, Y., Shi, X., Yan, J.: Poi: Multiple object tracking with

high performance detection and appearance feature. In: ECCV (2016) 4
136. Zhan, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: A simple baseline for multi-

object tracking. IJCV (2021) 4, 11, 12
137. Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: Few-shot image classification

with differentiable earth mover’s distance and structured classifiers. In: CVPR
(2020) 3

138. Zhang, L., Zhou, S., Guan, J., Zhang, J.: Accurate few-shot object detection with
support-query mutual guidance and hybrid loss. In: CVPR (2021) 3

139. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-
based and anchor-free detection via adaptive training sample selection. In: CVPR
(2020) 4

140. Zhang, W., Wang, Y.X.: Hallucination improves few-shot object detection. In:
CVPR (2021) 3



Few-Shot Video Object Detection 21

141. Zhang, Z., Qiao, S., Xie, C., Shen, W., Wang, B., Yuille, A.L.: Single-shot object
detection with enriched semantics. In: CVPR (2018) 4

142. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: ECCV
(2020) 4, 11, 12

143. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping
extreme and center points. In: CVPR (2019) 4

144. Zhu, C., Chen, F., Ahmed, U., Savvides, M.: Semantic relation reasoning for
shot-stable few-shot object detection. In: CVPR (2021) 3

145. Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W., Yang, M.H.: Online multi-object
tracking with dual matching attention networks. In: ECCV (2018) 4

146. Zhu, L., Yang, Y.: Compound memory networks for few-shot video classification.
In: ECCV (2018) 2

147. Zhu, R., Zhang, S., Wang, X., Wen, L., Shi, H., Bo, L., Mei, T.: Scratchdet:
Training single-shot object detectors from scratch. In: CVPR (2019) 4

148. Zhu, X., Dai, J., Yuan, L., Wei, Y.: Towards high performance video object de-
tection. In: CVPR (2018) 4

149. Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation
for video object detection. In: ICCV (2017) 4

150. Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recog-
nition. In: CVPR (2017) 4


	Few-Shot Video Object Detection

