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Abstract. This supplementary material provides additional details in
support of the contribution presented in the main paper.
e Section [1} Architecture Details (additional discussion in support of
Section 3.1 of the main paper).
e Section |2} K-Means Visualization (additional discussion in support
of Section 3.2 of the main paper).
e Section [3} Details of Experimental Setup (additional discussion in
support of Section 4 of the main paper).
e Section 4t 3D Object Recognition (additional discussion in support
of Section 4.3 of the main paper).

1 Architecture Details

Here, we provide more details on the backbone network, F' and the relation
module, R.
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Fig. 1: Detailed network architecture the backbone. T1 and T% are transformation net-
works for inputs of [ points
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Fig. 2: Detailed architecture for Relation module R. ‘b’ means batch size and r;; is the
relation score.

Fig. 3: tSNE visualization for points in different 3D point cloud objects

Backbone network. A mini transformation network T [?] takes raw input
point clouds of n points, and the output passes into a shared multi-layer percep-
tron network of output size 64. This output matrix passes into another feature
transformation network 75, and the transformed output matrix then passes into
a shared multi-layer perceptron network with layer output sizes 64, 128, 1024.
This extracted features of n points, f; is forwarded with Microshape basis, p;
in a inner product function, ( f;, p;). Then, we calculate the average similarity
vector from the output with average pooling. The similarity vector is passed into
a fully connected layer (of 300 dimensions), generating the features z;. Here, all
layers include ReLLU and batch normalization.

Relation Module architecture. The input of relation module is generated by
a concatenation function C(z;,s;), that takes feature of point cloud object, z; and
the semantic embedding of the task s;. This generated input is passed into three
fully-connected layers (300,600,1). Except for the output layer, which is Sigmoid
and generates relation scores, r;;, all fully-connected layers are associated with
LeakyReLU.
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2 K-Means Visualization

We plot a tSNE visualization for all points in 10000 random different 3D point
cloud objects in Fig. [3] We notice that some clusters have been formed from
where we calculated the Microshapes.

3 Details of Experimental Setup

We experiment on two synthetic datasets i.e. ModelNet40 [5], ShapeNet [I]
and three real-scanned dataset i.e. ScanObjectNN [4], Common Objects in 3D
(CO3D) [3] with our proposed two different experimental setups.

3.1 Within-dataset Experiment

We design within-dataset experimental setups by ordering all classes in descend-
ing order for a dataset based on sample frequency. It assists us in distinguishing
between base and novel classes since base classes have more instances than novel
classes. Rare objects have fewer samples in the actual world. So, following this
order, we create a realistic experimental setting. Therefore, all within-dataset
experiments follow long-tail distribution, shown in Fig. |4 The base and incre-
mental classes are treated as the head and tail classes of this data distribution,
respectively.

(1) ModelNet40: Tt comprises 12,311 3D point cloud objects from 40 categories.
We select 20 classes as base classes with 7438 training instances and 1958 test
instances. The rest of the 20 classes are used for four incremental tasks consisting
of 510 test instances.

(2) ShapeNet: Tt has 50604 shapes from 55 categories. We select 25 classes as
base classes with the topmost training instances and a total of 36791 training
and 9356 test samples. Then we choose the rest of the 30 classes as few-shot
incremental classes with 887 test instances.

(8) COS8D: Tt is composed of 50 MS-COCO types of 3D point clouds. We choose
25 base classes, with 12493 training and 1325 test instances. The remaining 25
classes with 407 test instances are utilized for incremental training.

3.2 Cross-dataset Experiment

For cross-dataset experiments, we choose synthetic dataset as base class and
real-scanned dataset as novel class. Table [[lshows the detailed data distribution
for three experimental setups.

(1) ModelNet40 — ScanObjectNN: We follow the selection of classes from [2].
Here, we select 26 base classes from ModelNet40. On the other hand, ScanOb-
jectNN has 15 classes with 2902 3D point cloud objects, but we choose non-
overlapped 11 classes from ScanObjectNN for incremental tasks as novel classes.
(2) ShapeNet — ScanObjectNN: We select 44 disjoint classes from ShapeNet
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Data distribution for within-dataset experiments by sorting all classes in de-

Fig. 4

scending order based on instance frequency. The plot clearly shows that all three setups
follow a long-tail distribution. In the experimental setup of (b) ShapeNet, some long

bars have been clipped for better visualization.
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Table 1: Details of cross-dataset experimental setup. Task 1 represents the base class,

whereas the rest of the tasks represent the novel class
(a) ShapeNet — CO3D

Dataset |Task Name of class
ShapeNet| 1 [ airplane, trash bin, basket, bathtub, bed, (b) ShapeNet — ScanObjectNN
birdhouse, bookshelf, bus, cabinet, Dataset | Task Name of class
camera, can, cap, clock, dishwasher, ShapeNet 1 airplane, basket, bathtub, bench, bicycle, birdhouse,
display, faucet, file cabinet, guitar, bottle, bowl, bus, camera, can, cap, car, clock,
helmet, jar, knife, lamp, loudspeaker, keyboard, dishwasher, earphone, faucet, file cabinet,
mailbox, microphone, mug, piano, pillow, guitar, helmet, jar, knife, lamp, laptop, loudspeaker,
pistol, flowerpot, printer, rifle, rocket, microphone, microwaves, motorbike, mug, piano, pistol,
stove, table, tower, train, vessel, washer flowerpot, printer, remote, rifle, rocket, skateboard,
2 |apple, ’b‘dckpz’lck. ball, bun’auu, baseballbat stove, telephone, tower, train, watercraft, washer
3 |baseballglove, bench, bicycle, book, bottle 2 bag, bin, box, cabinet, chair
4 bowl, broccoli, cake, car, carrot ScanObjectNN 3 desk, display, door, shelf, table
5 cellphone, chair, couch, cup, donut 4 bed, pillow, sink, sofa, toilet
CO3D 6 frisbee, hairdryer, handbag, hotdog, (c) ModelNet — ScanObjectNN
hydrant Dataset  |Task Name of class
7 keyboard, kite, laptop, microwave, ModelNet 1 | airplane, bathtub, bottle, bowl, car, cone, cup, curtain,
motorcycle flower pot, glass box, guitar, keyboard, lamp, laptop,
8 mouse, orange, parking meter, pizza, mantel, night stand, person, piano, plant, radio, range
plant hood, stairs, tent, tv stand, vase
9 remote, sandwich, skateboard, stopsign, 2 cabinet, chair, desk, display
suitcase ScanObjectNN 3 door, shelf, table, bed
10 teddybear, toaster, toilet, toybus, 4 sink, sofa, toilet
toyplane
11 toytruck, tv, umbrella, vase, wineglass

as base classes. For base model training, there are 22318 training and 5845 test
instances from ShapeNet. Also, from ScanObjectNN, we select all 15 classes for
few-shot incremental model training with 581 test instances.

(8) ShapeNet — COS3D: Base classes are selected from Shapenet, while for few-
shot incremental steps, the classes are chosen from CO3D. This setup represents
the most realistic scenario. We select non-overlapped 39 classes from Shapenet
for base classes. Also, CO3D has 50 classes with 16557 training and 1732 test
instances. Here, we choose all 50 classes for few-shot incremental tasks.

Table 2: 3D recognition on common objects of ModelNet40 (synthetic training) and
ScanObjectNN (real-scanned testing)

Method Accuracy
Baseline (without Microshape) 44.25
Ours (with Microshape) 46.34

4 3D Object Recognition

Microshape based 3D point description can benefit many problems beyond FS-
CIL.In Table 2] we perform 3D object recognition experiment on 11 common
objects of ModelNet40 and ScanObjectNN. Here, the model is trained on the
common (synthetic) objects of ModelNet40 and evaluated on the same (real-
scanned) objects from ScanObjectNN. There is a clear domain gap from the
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without microshape with microshape
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Fig. 5: Effect of using Microshape. Only two classes, ‘door’ and ‘sofa’, are used for
visualization. Synthetic and real instances form different clusters on the left because of
the domain gap. Microshape-based feature minimizes this gap by mixing both instances
in the same cluster

data distribution of training (synthetic) and testing (real-scanned) instances. We
attempt to reduce this gap using our Microshape based backbone and relation
network (see Fig. . Our approach combining of Microshape and relation net-
work with language prototype outperforms the baseline (without Microshape).
It is possible because our method helped reducing the domain gap of training
and testing data.
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