DnA: Improve Few-Shot Transfer Learning with Low-Rank Decompose and Align

Ziyu Jiang^{1,2†}, Tianlong Chen³, Xuxi Chen³, Yu Cheng¹, Luowei Zhou¹, Lu Yuan¹, Ahmed Awadallah¹, and Zhangyang Wang^{3‡}

- 1 Microsoft Corporation
- ² Texas A&M University
- ³ University of Texas at Austin

This supplementary material contains the following details that we could not include in the main paper due to space restrictions.

- (Sec. 1) Details of the computing infrastructure.
- (Sec. 2) Comparison with LoRA [1].

1 Details of computing infrastructure

Our codes are based on Pytorch [2], and all models are trained with NVIDIA A100 Tensor Core GPU.

2 Comparison with LoRA [1]

LoRA, a closely related work, shows that formalizing the weight changing as a low-rank matrix can also improve the fine-tuning performance. Therefore, we compare with Align+LoRA to verify the effectiveness of the proposed Decomposition method. As illustrated at Table 1, by applying the LoRA with Align, the performance could improve by 0.4%. However, it is still weaker than the proposed DnA with an obvious margin of 0.5%.

Table 1: Compare with LoRA [1] in terms of the 5-shot performance on iNaturalist-1k.

Method	Accuracy
Align Align+LoRA	47.4 47.8
DnA (Ours)	48.3

 $^{^\}dagger$ Work done during an intership at Microsoft Corporation

[‡] Correspondence to: Zhangyang Wang (atlaswang@utexas.edu)

References

- 1. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.: Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)
- 2. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)