Supplementary: Rethinking Few-Shot Object Detection on a Multi-Domain Benchmark

Kibok Lee^{1,2*}, Hao Yang^{1†}, Satyaki Chakraborty¹, Zhaowei Cai¹, Gurumurthy Swaminathan¹, Avinash Ravichandran¹, and Onkar Dabeer¹

¹AWS AI Labs ²Yonsei University {kibok,haoyng,satyaki,zhaoweic,gurumurs,ravinash,onkardab}@amazon.com kibok@yonsei.ac.kr

A Natural K-Shot Sampling

In this section, we describe how we perform natural K-shot sampling in detail:

Step 1. Sample $C \times K$ **images.** C is the number of classes of the original dataset S. In this step, without worrying about class labels, we sample S from the entire dataset D. Unlike the standard K-shot sampling algorithm in recent FSOD works [11,26,21], we do not apply stratified sampling. This is because an image usually contains multiple annotations, such that stratified sampling might result in an artificial class distribution [11].

Step 2. Check missing classes. The initial sampled dataset might not contain some classes, particularly those present only in a few images in the original dataset. To compensate for this, we check if there are any missing classes and update the sampled dataset. Specifically, we manage two datasets: \mathcal{P} is a set of images to be added, and \mathcal{Q} is a set of images to be kept. Then, for each class, if no image in \mathcal{S} contains the class, we sample an image from the \mathcal{D} containing the class and put it in \mathcal{P} ; otherwise, we sample an image from \mathcal{S} containing the class and put it in \mathcal{Q} .

Step 3. Update the sampled dataset. As the final step, we adjust the initial dataset S to guarantee that all classes are present. To match the number of added and removed images, we sample a set of images to be removed \mathcal{R} from $S - \mathcal{Q}$ where the size of \mathcal{R} is the same as \mathcal{P} . Here, \mathcal{Q} guarantees that any class in S does not become empty. Finally, we add \mathcal{P} and remove \mathcal{R} from S.

The complete algorithm is in Algorithm 1.

B Dataset Size Reduction

We initially collected more than 100 public detection datasets, and then selected 32 datasets based on availability, diversity of domains, annotation quality, and number of citations. After initial experiments on them, to reduce the computational burden for future research, we picked 10 datasets out of the 32, which show similar performance trends with the 32 datasets, while covering a variety of domains based on the domain distance.

Algorithm 1 Natural K-shot sampling algorithm.

1: Input: Dataset \mathcal{D} , classes \mathcal{Y} , number of classes $C = |\mathcal{Y}|$, average shot number K 2: **Output:** Sampled dataset S3: if $|\mathcal{D}| \leq C \times K$ then $\mathcal{S} \leftarrow \mathcal{D}$ 4: 5: else 6: // Step 1: sample an initial dataset 7: Sample $\mathcal{S} \subset \mathcal{D}$ where $|\mathcal{S}| = N \times K$ 8: // Step 2: check missing classes 9: $\mathcal{P} = \{\} // \text{ images to be added}$ 10: $Q = \{\} // \text{ images to be kept}$ for $y \in \mathcal{Y}$ do 11: 12:if no image in \mathcal{S} contains y then 13:Sample $I \in \mathcal{D}$ where I contains y $\mathcal{P} \leftarrow \mathcal{P} \cup \{I\}$ 14: 15:else Sample $I \in \mathcal{S}$ where I contains y16:17: $\mathcal{Q} \leftarrow \mathcal{Q} \cup \{I\}$ end if 18:end for 19:// Step 3: update the sampled dataset 20: 21: if $|\mathcal{P}| > 0$ then 22: Sample $\mathcal{R} \subset \mathcal{S} - \mathcal{Q}$ where $|\mathcal{R}| = |\mathcal{P}|$ 23: $\mathcal{S} \leftarrow (\mathcal{S} \cup \mathcal{P}) - \mathcal{R}$ 24:end if 25: end if

In the proposed MoFSOD benchmark, several datasets contain a large number of classes and testing images, such as LogoDet-3K. With the proposed natural K-shot sampling, the training time is proportional to the number of classes. To address concerns on computational cost and speed up overall experiment time, we limited the number of classes to 50 and the number of test samples to 1k.

Specifically, we randomly sample 50 classes and remove images containing all the rest classes in each episode, such that the intention of the original datasets is kept, *i.e.*, all remaining logos or traffic signs should be detected. We note that all classes in these datasets are mostly isolated to certain images, such that removing images containing a class does not hurt the distribution of other classes. We confirmed that the performance differences between sampled and full test sets are less than 1.5% for all datasets.

C Additional Experimental Results

C.1 Dataset Statistics

More detailed statistics of the ten datasets of MoFSOD can be found in Table C.1.

Table C.1: Statistics of 10 datasets in the proposed benchmark. For KITTI We use the merged set of classes from the universal object detection benchmark [27].

-				*		
Domain	Dataset	# classes	# train images	$\#$ train anno. \sharp	≠ test images	s # test anno.
Aerial	VisDrone	10	7019	381965	1610	75103
Agriculture	DeepFruits	7	457	2553	114	590
Animal	iWildCam	1	21065	31591	5313	7901
Cartoon	Clipart	20	500	1640	500	1527
Fashion	iMaterialist	46	45623	333402	1158	8782
Food	Oktoberfest	15	1110	2697	85	236
Logo	LogoDet-3K	352	18752	35264	8331	15945
Person	CrowdHuman	2	15000	705967	4370	206231
Security	SIXray	5	7496	15439	1310	2054
Traffic	KITTI	4	5481	38077	7481	52458

Fig. C.1: Image samples of the additional datasets.

C.2 Detailed 1-, 3- and 10-shot Results

In addition to per-dataset 5-shot results in Table 3 of the main paper, we present per-dataset 1-, 3- and 10-shot results in Table C.2, C.3, and C.4, respectively.

C.3 Extended 32 Datasets Results

We evaluate FT against SOTA methods in an extended 32 dataset benchmark on 17 Domains. These datasets are: CARPK [9], DOTA [28], and VisDrone [33] in aerial images, DeepFruits [17] and MinneApple [8] in agriculture, ENA24 [31] and iWildCam [1] in animal in the wild, Clipart, Comic, and Watercolor [10] in cartoon, SKU110K [6] in dense product, DeepFashion2 [3] and iMaterialist [7] in fashion, WIDER FACE [30] in face, Kitchen [5] and Oktoberfest [36] in food, HollywoodHeads [23] in head, LogoDet-3K [25] and OpenLogo [20] in logo, ChestX-Det10 [13] and DeepLesion [29] in medical imaging, CrowdHuman [19] and WiderPerson [32] in person, PIDray [24] and SIXray [14] in security, tabledetection [18] in table, COCO-Text [22] in text in the wild, and Cityscapes [2], KITTI [4], LISA [15], and TT100K [35] in traffic, DUO [12] in underwater. Their statistics can be found in Table C.5. Sample images from these datasets can be found in Figure C.1.

Table C.6 compares FT and SOTA methods. TFA-cos is a variation of TFA where the classification head is replaced with the cosine similarity. Note that, while the comparison within tables is fair, the results are NOT directly comparable to the results in the main paper, as they are experimented in different

4 K. Lee et al.

Table C.2: Per-dataset 1-shot performance of the effects of tuning different parameters, different architectures and pre-training datasets.

1-shot	Aerial	Agriculture	Animal	$\underline{\operatorname{Cartoon}}$	Fashion	Food	Logo	Person	Security	Traffic	Mean	Rank
Unfrozen	VisDrone	DeepFruits	iWildCam	Clipart	iMaterialist	Oktoberfest	LogoDet-3K	CrowdHuman	SIXray	KITTI		
Last FC layers (TFA [26])	7.5 ± 0.5	28.7 ± 5.0	55.5 ± 17.3	29.2 ± 2.5	6.7 ± 1.2	21.9 ± 3.3	12.3 ± 3.9	26.3 ± 2.1	2.6 ± 1.8	43.6 ± 5.7	23.4 ± 4.6	2.7 ± 0.3
Detection Head (FSCE-base [21])	7.8 ± 0.8	34.6 ± 6.3	62.3 ± 8.2	30.6 ± 2.6	14.1 ± 1.2	41.0 ± 4.0	24.1 ± 5.5	44.4 ± 4.8	4.5 ± 2.4	41.3 ± 5.5	30.5 ± 2.3	1.9 ± 0.1
Whole Network (Ours-FT)	8.4 ± 1.0	36.2 ± 7.7	56.1 ± 5.1	37.2 ± 3.9	14.2 ± 1.5	47.7 ± 6.7	25.0 ± 4.7	45.0 ± 4.2	6.6 ± 4.3	38.8 ± 3.6	31.5 ± 2.0	1.5 ± 0.3

(a) Fine-tuning different number of parameters with Faster R-CNN pre-trained on COCO.

1-shot		Aerial	Agriculture	Animal	Cartoon	Fashion	Food	Logo	Person	Security	Traffic	Mean	Bank
Architecture	Pre-training	VisDrone	DeepFruits	iWildCam	Clipart	iMaterialist	Oktoberfest	LogoDet-3K	CrowdHuman	SIXray	KITTI		
Faster R-CNN		8.4 ± 1.0	36.2 ± 7.7	56.1 ± 5.1	37.2 ± 3.9	14.2 ± 1.5	47.7 ± 6.7	25.0 ± 4.7	45.0 ± 4.2	6.6 ± 4.3	38.8 ± 3.6	31.5 ± 2.0	3.6 ± 0.2
Cascade R-CNN		7.2 ± 0.8	35.2 ± 6.4	56.3 ± 8.0	39.0 ± 3.6	13.0 ± 1.2	47.1 ± 6.4	27.6 ± 4.3	44.5 ± 4.2	6.5 ± 4.5	38.3 ± 5.6	31.5 ± 2.1	3.9 ± 0.4
CenterNet2	COCO	7.9 ± 0.8	35.6 ± 5.2	38.2 ± 20.6	33.0 ± 7.7	14.7 ± 2.2	45.2 ± 6.7	27.6 ± 4.3	43.8 ± 4.8	7.0 ± 4.1	38.4 ± 3.6	29.1 ± 5.2	4.0 ± 0.3
RetinaNet		5.5 ± 0.6	27.6 ± 7.3	50.9 ± 14.6	10.2 ± 1.7	8.7 ± 0.7	42.6 ± 5.8	24.3 ± 4.1	41.8 ± 2.8	6.3 ± 3.9	36.3 ± 2.3	25.4 ± 4.0	5.4 ± 0.6
Deformable-DETR		8.7 ± 1.1	44.0 ± 6.4	53.2 ± 12.1	23.4 ± 4.4	15.3 ± 1.3	47.8 ± 6.3	28.0 ± 4.9	47.8 ± 4.4	10.1 ± 4.6	41.9 ± 5.1	32.0 ± 2.9	2.5 ± 0.5
Cascade R-CNN-P67		9.6 ± 1.0	41.0 ± 4.9	$65.5~\pm~7.2$	44.0 ± 2.5	16.2 ± 1.6	51.3 ± 5.9	28.3 ± 4.9	47.0 ± 3.9	8.8 ± 4.5	$42.1~\pm~4.5$	35.4 ± 1.8	1.6 ± 0.3
Faster R-CNN		8.3 ± 0.7	45.2 ± 4.4	58.7 ± 6.4	24.2 ± 3.9	20.7 ± 1.3	49.2 ± 5.2	25.6 ± 5.2	41.6 ± 3.2	8.6 ± 3.8	34.9 ± 3.5	31.7 ± 1.7	2.1 ± 0.2
CenterNet2	LVIS	7.6 ± 0.7	41.5 ± 6.0	36.0 ± 12.7	20.0 ± 2.4	18.7 ± 1.4	50.4 ± 7.1	27.8 ± 5.0	38.7 ± 2.6	8.6 ± 4.2	32.3 ± 3.6	$28.1~\pm~3.3$	2.7 ± 0.3
Cascade R-CNN-P67		9.2 ± 0.8	46.4 ± 6.1	$61.2~\pm~6.0$	29.9 ± 2.9	23.1 ± 1.4	52.4 ± 6.9	31.0 ± 5.3	43.4 ± 2.7	9.2 ± 4.7	38.5 ± 4.8	34.4 ± 2.0	1.2 ± 0.2

(b) Performance of different architectures pre-trained on COCO and LVIS.

1-shot		Aerial	Agriculture	Animal	Cartoon	Fashion	Food	Logo	Person	Security	Traffic	Mean	Rank
Architecture	Pre-training	VisDrone	DeepFruits	iWildCam	Clipart	iMaterialist	Oktoberfest	LogoDet-3K	CrowdHuman	SIXray	KITTI		
	ImageNet	4.8 ± 0.5	23.5 ± 4.5	1.0 ± 0.8	2.8 ± 1.0	9.3 ± 1.1	43.3 ± 5.2	23.1 ± 3.8	14.8 ± 2.5	2.1 ± 1.3	$10.7~\pm~2.7$	13.5 ± 1.6	6.0 ± 0.1
Cascade R-CNN-P67	COCO	9.6 ± 1.0	41.0 ± 4.9	65.5 ± 7.2	44.0 ± 2.5	16.2 ± 1.6	51.3 ± 5.9	28.3 ± 4.9	47.0 ± 3.9	8.8 ± 4.5	42.1 ± 4.5	35.4 ± 1.8	2.9 ± 0.4
	FSODD	5.8 ± 0.5	48.0 ± 3.9	44.1 ± 11.1	12.5 ± 2.7	14.8 ± 1.2	50.1 ± 6.5	29.3 ± 4.2	28.6 ± 1.8	8.0 ± 3.6	25.5 ± 3.0	26.7 ± 2.9	4.2 ± 0.5
	LVIS	9.2 ± 0.8	46.4 ± 6.1	61.2 ± 6.0	29.9 ± 2.9	23.1 ± 1.4	52.4 ± 6.9	31.0 ± 5.3	43.4 ± 2.7	9.2 ± 4.7	38.5 ± 4.8	34.4 ± 2.0	3.0 ± 0.2
	Unified	9.7 ± 1.0	47.2 ± 6.5	45.8 ± 8.5	31.2 ± 5.1	18.4 ± 1.3	52.8 ± 6.1	31.2 ± 5.1	46.4 ± 3.0	10.4 ± 4.8	39.5 ± 3.6	33.3 ± 2.2	2.8 ± 0.3
	LVIS+	11.7 ± 1.0	$57.4~\pm~6.4$	30.9 ± 15.9	37.3 ± 1.9	25.5 ± 0.9	50.0 ± 8.0	36.0 ± 3.8	45.1 ± 3.1	13.3 ± 5.2	39.5 ± 4.9	34.7 ± 4.2	$\textbf{2.1}~\pm~0.5$
	COCO	7.9 ± 0.8	35.6 ± 5.2	38.2 ± 20.6	33.0 ± 7.7	14.7 ± 2.2	45.2 ± 6.7	27.6 ± 4.3	43.8 ± 4.8	7.0 ± 4.1	38.4 ± 3.6	29.1 ± 5.2	3.1 ± 0.4
CenterNet2	LVIS	7.6 ± 0.7	41.5 ± 6.0	36.0 ± 12.7	20.0 ± 2.4	18.7 ± 1.4	50.4 ± 7.1	27.8 ± 5.0	38.7 ± 2.6	8.6 ± 4.2	32.3 ± 3.6	28.1 ± 3.3	3.3 ± 0.3
	LVIS+	10.6 ± 1.1	55.7 ± 5.4	38.4 ± 12.8	35.5 ± 2.9	25.1 ± 1.1	48.4 ± 6.7	36.7 ± 4.2	46.4 ± 3.3	13.9 ± 5.7	37.9 ± 5.3	34.9 ± 3.2	1.9 ± 0.3
	LVIS++	10.7 ± 1.0	$59.4~\pm~5.5$	41.7 ± 13.4	38.2 ± 2.3	26.7 ± 1.0	46.2 ± 6.1	35.6 ± 4.2	47.0 ± 3.5	$15.7~\pm~5.8$	37.1 ± 4.7	35.8 ± 3.4	1.7 ± 0.3

(c) Performance of Cascade R-CNN-P67 and CenterNet2 pre-trained on different datasets.

settings. Specifically, the architecture uses deformable convolution v1 while the one in the main paper uses v2, and is trained with a non-standard scheduler. We can observe that FT is a strong baseline, outperforming all other methods.

We then present the results between different architectures and pre-training datasets in Table C.7. Although the ablation study here is not as comprehensive as the main paper, we can still see that *Cascade R-CNN-P67* outperforms *Faster R-CNN*. The margin here is smaller mainly due to the less optimal learning rate scheduler we used for *Cascade R-CNN-P67* and possibly the lack of deformable convolution in this model. Once we use the same learning rate scheduler and backbone architecture with deformable convolution v2 [34] for both *Cascade R-CNN-P67* and *Faster R-CNN* as in the main paper, the performance gap for different shots actually increases. On the other hand, the comparison between all *Cascade R-CNN-P67* experiments is fair. We can see that over a larger range of domains, **Unified** provides better results than **COCO** by a significant margin. However, this performance gap could be due to the non-optimal training of **COCO**. These suggest that besides the size/quality of the pre-training datasets, how to train for downstream tasks optimally is also an important factor.

Table C.3: Per-dataset 3-shot performance of the effects of tuning different parameters, different architectures and pre-training datasets.

	3-shot	Aerial	Agriculture	Animal	Cartoon	Fashion	Food	Logo	Person	Security	Traffic	Mean	Rank
	Unfrozen	VisDrone	DeepFruits	iWildCam	Clipart	iMaterialist	Oktoberfest	LogoDet-3K	CrowdHuman	SIXray	KITTI	mean	ruun
	Last FC layers (TFA [26])	9.4 ± 0.4	41.8 ± 3.0	70.3 ± 4.5	35.9 ± 2.3	7.7 ± 1.3	32.0 ± 6.9	13.3 ± 3.3	29.6 ± 1.0	5.4 ± 1.9	46.6 ± 4.2	29.2 ± 1.8	2.7 ± 0.2
Ľ	etection Head (FSCE-base [21])	11.4 ± 0.7	51.6 ± 4.8	70.0 ± 1.9	38.7 ± 1.7	18.4 ± 1.0	61.4 ± 5.4	38.4 ± 4.8	49.0 ± 3.2	10.7 ± 3.5	44.6 ± 4.4	39.4 ± 1.6	1.9 ± 0.2
	Whole Network (Ours-FT)	$12.0~\pm~0.8$	52.6 ± 4.6	62.9 ± 5.2	$45.5~\pm~3.1$	19.3 ± 1.0	70.1 ± 5.9	$41.7~\pm~4.5$	48.8 ± 2.7	15.5 ± 6.2	43.2 ± 3.6	$41.1~\pm~1.8$	1.5 ± 0.2

(a) Fine-tuning different number of parameters with Faster R-CNN pre-trained on COCO.

3-shot		Aerial	Agriculture	Animal	Cartoon	Fashion	Food	Logo	Person	Security	Traffic	Mean	Rank
Architecture	Pre-training	VisDrone	DeepFruits	iWildCam	Clipart	iMaterialist	Oktoberfest	LogoDet-3K	CrowdHuman	SIXray	KITTI	mean	Tunn
Faster R-CNN		12.0 ± 0.8	52.6 ± 4.6	62.9 ± 5.2	45.5 ± 3.1	19.3 ± 1.0	70.1 ± 5.9	41.7 ± 4.5	48.8 ± 2.7	15.5 ± 6.2	43.2 ± 3.6	41.1 ± 1.8	3.5 ± 0.3
Cascade R-CNN		11.0 ± 0.7	52.3 ± 2.9	67.7 ± 3.2	45.9 ± 2.5	18.3 ± 0.9	69.5 ± 5.1	42.3 ± 4.1	48.9 ± 2.6	14.4 ± 5.9	41.8 ± 3.1	41.2 ± 1.5	3.8 ± 0.3
CenterNet2	0000	11.6 ± 0.7	50.9 ± 6.3	60.6 ± 4.9	44.0 ± 6.8	19.7 ± 2.4	68.2 ± 5.9	42.7 ± 2.4	48.6 ± 3.9	15.5 ± 5.7	40.5 ± 4.4	40.2 ± 1.9	3.8 ± 0.4
RetinaNet	0000	8.2 ± 0.5	45.7 ± 3.2	59.0 ± 7.2	19.2 ± 1.8	14.5 ± 0.6	66.5 ± 6.4	39.1 ± 4.7	45.5 ± 2.0	12.0 ± 4.9	37.8 ± 2.9	34.8 ± 2.2	5.6 ± 0.6
Deformable-DETR		12.7 ± 0.7	61.1 ± 4.3	64.8 ± 3.2	35.9 ± 2.7	19.9 ± 1.2	67.9 ± 4.6	42.5 ± 4.6	53.1 ± 3.1	21.3 ± 6.7	43.4 ± 3.5	42.3 ± 1.6	2.7 ± 0.5
Cascade R-CNN-P67		13.7 ± 0.9	55.3 ± 3.0	72.8 ± 2.5	52.1 ± 2.4	21.9 ± 1.0	$71.2~\pm~5.4$	46.6 ± 4.4	51.2 ± 2.4	17.9 ± 5.6	44.4 ± 2.8	44.7 ± 1.6	1.7 ± 0.5
Faster R-CNN		11.9 ± 0.6	59.2 ± 5.2	69.4 ± 3.1	33.8 ± 3.5	25.8 ± 0.9	71.1 ± 4.4	41.5 ± 4.2	45.9 ± 2.5	18.3 ± 5.1	38.6 ± 3.6	$41.6~\pm~1.5$	2.1 ± 0.3
CenterNet2	LVIS	11.2 ± 0.6	56.9 ± 3.9	$59.0~\pm~5.5$	27.9 ± 3.9	23.1 ± 0.6	70.7 ± 5.0	45.3 ± 4.0	43.8 ± 2.3	16.5 ± 5.3	35.8 ± 4.2	39.0 ± 1.7	2.7 ± 0.3
Cascade R-CNN-P67		13.1 ± 0.7	$59.9~\pm~5.3$	71.1 ± 3.1	39.6 ± 3.7	28.1 ± 1.0	$71.9~\pm~5.5$	47.7 ± 2.8	47.3 ± 2.4	$19.0~\pm~5.4$	42.8 ± 4.1	44.0 ± 1.6	1.2 ± 0.3

(b) Performance of different architectures pre-trained on COCO and LVIS.

3-shot		Aerial	Agriculture	Animal	Cartoon	Fashion	Food	Logo	Person	Security	Traffic	Mean	Rank
Architecture	Pre-training	VisDrone	DeepFruits	iWildCam	Clipart	iMaterialist	Oktoberfest	LogoDet-3K	CrowdHuman	SIXray	KITTI		
	ImageNet	7.9 ± 0.5	43.1 ± 3.3	4.1 ± 2.2	7.3 ± 1.8	16.7 ± 0.7	65.8 ± 5.5	37.6 ± 4.7	25.6 ± 3.3	6.5 ± 3.4	17.9 ± 2.0	23.2 ± 1.5	6.0 ± 0.1
Cascade R-CNN-P67	COCO	13.7 ± 0.9	55.3 ± 3.0	72.8 ± 2.5	52.1 ± 2.4	21.9 ± 1.0	71.2 ± 5.4	46.6 ± 4.4	51.2 ± 2.4	17.9 ± 5.6	44.4 ± 2.8	44.7 ± 1.6	2.9 ± 0.4
	FSODD	9.0 ± 0.8	61.0 ± 3.4	62.3 ± 4.6	19.6 ± 2.5	19.5 ± 0.8	71.8 ± 5.0	46.9 ± 4.4	35.0 ± 2.5	16.1 ± 5.0	28.3 ± 3.2	36.9 ± 1.5	4.3 ± 0.4
	LVIS	13.1 ± 0.7	59.9 ± 5.3	71.1 ± 3.1	39.6 ± 3.7	28.1 ± 1.0	71.9 ± 5.5	47.7 ± 2.8	47.3 ± 2.4	19.0 ± 5.4	42.8 ± 4.1	44.0 ± 1.6	3.2 ± 0.5
	Unified	14.0 ± 0.9	62.5 ± 3.2	63.7 ± 4.2	41.9 ± 3.3	24.2 ± 0.8	73.7 ± 5.1	50.1 ± 4.5	50.3 ± 2.2	19.7 ± 4.5	43.1 ± 3.0	44.3 ± 1.4	2.7 ± 0.4
	LVIS+	16.3 ± 0.9	$70.7~\pm~3.5$	55.0 ± 6.3	46.8 ± 2.3	29.8 ± 0.7	$72.1~\pm~3.5$	52.2 ± 3.6	50.1 ± 2.6	26.8 ± 4.9	46.0 ± 3.4	46.6 ± 1.6	1.9 ± 0.5
	COCO	7.9 ± 0.8	35.6 ± 5.2	38.2 ± 20.6	33.0 ± 7.7	14.7 ± 2.2	45.2 ± 6.7	27.6 ± 4.3	43.8 ± 4.8	7.0 ± 4.1	38.4 ± 3.6	$29.1~\pm~5.2$	3.1 ± 0.4
C	LVIS	7.6 ± 0.7	41.5 ± 6.0	36.0 ± 12.7	20.0 ± 2.4	18.7 ± 1.4	50.4 ± 7.1	27.8 ± 5.0	38.7 ± 2.6	8.6 ± 4.2	32.3 ± 3.6	28.1 ± 3.3	3.3 ± 0.3
CenterNet2	LVIS+	10.6 ± 1.1	55.7 ± 5.4	38.4 ± 12.8	35.5 ± 2.9	25.1 ± 1.1	48.4 ± 6.7	36.7 ± 4.2	46.4 ± 3.3	13.9 ± 5.7	37.9 ± 5.3	34.9 ± 3.2	1.9 ± 0.3
	LVIS++	10.7 ± 1.0	$59.4~\pm~5.5$	41.7 ± 13.4	38.2 ± 2.3	26.7 ± 1.0	46.2 ± 6.1	35.6 ± 4.2	47.0 ± 3.5	15.7 ± 5.8	37.1 ± 4.7	35.8 ± 3.4	1.7 ± 0.3

(c) Performance of Cascade R-CNN-P67 and CenterNet2 pre-trained on different datasets.

6 K. Lee et al.

Table C.4: Per-dataset 10-shot performance of the effects of tuning different parameters, different architectures and pre-training datasets.

	10-shot	Aerial	Agriculture	Animal	Cartoon	Fashion	Food	Logo	Person	Security	Traffic	Mean	Rank
	Unfrozen	VisDrone	DeepFruits	iWildCam	Clipart	iMaterialist	Oktoberfest	LogoDet-3K	CrowdHuman	SIXray	KITTI	mean	- comm
	Last FC layers (TFA [26])	10.8 ± 0.5	55.9 ± 1.8	73.8 ± 2.9	44.5 ± 1.0	8.1 ± 1.2	48.0 ± 2.7	15.3 ± 4.4	31.4 ± 0.7	11.0 ± 1.2	53.2 ± 2.4	35.2 ± 1.2	2.7 ± 0.2
D	etection Head (FSCE-base [21])	15.5 ± 0.6	69.7 ± 2.8	72.2 ± 1.8	50.2 ± 1.1	23.2 ± 1.2	83.0 ± 3.3	55.7 ± 4.3	54.4 ± 1.8	23.8 ± 1.9	54.0 ± 2.5	50.2 ± 1.1	1.8 ± 0.2
	Whole Network (Ours-FT)	17.5 ± 0.7	71.4 ± 1.9	65.3 ± 6.9	57.4 ± 1.1	24.8 ± 1.0	90.6 ± 1.9	59.2 ± 4.4	53.3 ± 1.7	36.1 ± 3.0	$50.6~\pm~3.1$	52.6 ± 1.8	1.5 ± 0.2

(a) Fine-tuning different number of parameters with Faster R-CNN pre-trained on COCO.

10-shot		Aerial	Agriculture	Animal	$\operatorname{Cartoon}$	Fashion	Food	Logo	Person	Security	Traffic	Mean	Rank
Architecture	Pre-training	VisDrone	DeepFruits	iWildCam	Clipart	iMaterialist	Oktoberfest	LogoDet-3K	CrowdHuman	SIXray	KITTI	mean	Tunn
Faster R-CNN		17.5 ± 0.7	71.4 ± 1.9	65.3 ± 6.9	57.4 ± 1.1	24.8 ± 1.0	90.6 ± 1.9	59.2 ± 4.4	53.3 ± 1.7	36.1 ± 3.0	50.6 ± 3.1	52.6 ± 1.8	3.8 ± 0.4
Cascade R-CNN		16.6 ± 0.7	71.6 ± 2.2	69.7 ± 3.5	58.5 ± 1.5	23.8 ± 0.9	90.0 ± 2.2	58.8 ± 4.6	53.5 ± 1.6	33.7 ± 2.7	50.8 ± 2.9	52.7 ± 1.2	3.9 ± 0.4
CenterNet2	0000	16.4 ± 0.7	71.3 ± 2.0	65.2 ± 5.1	57.6 ± 7.0	25.4 ± 1.7	89.9 ± 2.7	62.0 ± 5.2	54.1 ± 2.8	33.1 ± 2.1	50.0 ± 5.0	52.5 ± 1.9	3.8 ± 0.4
RetinaNet	0000	12.6 ± 0.6	69.2 ± 2.5	64.3 ± 4.5	40.9 ± 1.6	21.5 ± 0.5	90.2 ± 1.7	60.4 ± 3.5	50.0 ± 1.5	32.7 ± 1.4	46.3 ± 2.4	48.8 ± 1.2	5.2 ± 0.5
Deformable-DETR		18.3 ± 0.9	78.6 ± 2.0	70.3 ± 3.4	54.5 ± 1.5	24.2 ± 1.1	86.7 ± 2.2	61.1 ± 3.9	59.6 ± 1.7	39.8 ± 3.3	54.3 ± 2.8	54.7 ± 1.0	2.7 ± 0.5
Cascade R-CNN-P67		$19.1~\pm~0.8$	73.3 ± 1.6	75.4 ± 2.5	63.4 ± 1.0	27.4 ± 1.2	91.2 ± 2.1	$65.7~\pm~4.7$	56.2 ± 1.6	38.3 ± 2.4	53.7 ± 2.9	56.4 ± 1.1	1.7 ± 0.4
Faster R-CNN		17.7 ± 0.7	74.8 ± 1.9	71.9 ± 2.5	51.1 ± 1.0	31.0 ± 0.8	90.5 ± 1.6	63.1 ± 4.2	51.1 ± 1.7	36.6 ± 2.0	47.7 ± 2.6	53.6 ± 1.0	2.1 ± 0.3
CenterNet2	LVIS	16.6 ± 0.8	74.6 ± 2.0	68.1 ± 3.1	43.9 ± 1.3	28.3 ± 0.9	90.8 ± 2.0	64.1 ± 4.1	50.0 ± 1.6	34.1 ± 1.7	45.7 ± 2.9	51.6 ± 1.0	2.7 ± 0.3
Cascade R-CNN-P67		18.6 ± 0.7	76.1 ± 1.4	72.8 ± 2.7	55.7 ± 1.1	33.1 ± 0.6	91.4 ± 2.0	66.9 ± 4.0	52.5 ± 1.5	37.7 ± 2.6	51.1 ± 2.8	55.6 ± 1.0	1.2 ± 0.3

(b) Performance of different architectures pre-trained on COCO and LVIS.

10-shot		Aerial	Agriculture	Animal	$\operatorname{Cartoon}$	Fashion	Food	Logo	Person	Security	Traffic	Mean	Bank
Architecture	Pre-training	VisDrone	DeepFruits	iWildCam	Clipart	iMaterialist	Oktoberfest	LogoDet-3K	CrowdHuman	SIXray	KITTI		
	ImageNet	13.5 ± 0.5	66.5 ± 2.5	$\overline{14.6\pm4.4}$	25.8 ± 1.6	21.9 ± 0.6	86.2 ± 3.1	54.7 ± 3.7	38.9 ± 1.3	22.1 ± 2.3	32.6 ± 3.0	37.7 ± 1.2	5.9 ± 0.2
Cascade B-CNN-P67	COCO	19.1 ± 0.8	73.3 ± 1.6	75.4 ± 2.5	63.4 ± 1.0	27.4 ± 1.2	91.2 ± 2.1	65.7 ± 4.7	56.2 ± 1.6	38.3 ± 2.4	53.7 ± 2.9	56.4 ± 1.1	2.9 ± 0.4
Cassada D CNN D67	FSODD	13.7 ± 0.6	74.9 ± 2.1	67.8 ± 3.7	35.9 ± 1.9	24.6 ± 0.9	90.8 ± 1.5	66.5 ± 3.6	42.9 ± 1.8	34.3 ± 1.6	39.5 ± 2.6	49.1 ± 1.0	4.5 ± 0.4
Cascade R-CNN-P67	LVIS	18.6 ± 0.7	76.1 ± 1.4	72.8 ± 2.7	55.7 ± 1.1	33.1 ± 0.6	91.4 ± 2.0	66.9 ± 4.0	52.5 ± 1.5	37.7 ± 2.6	51.1 ± 2.8	55.6 ± 1.0	3.2 ± 0.5
	Unified	19.7 ± 0.7	76.8 ± 1.1	69.9 ± 3.4	58.6 ± 1.5	29.5 ± 1.1	92.8 ± 1.0	69.5 ± 4.0	55.6 ± 1.5	39.9 ± 2.9	53.6 ± 2.9	56.6 ± 1.1	2.4 ± 0.2
	LVIS+	21.4 ± 0.7	84.4 ± 1.5	67.1 ± 3.5	$60.4~\pm~0.8$	34.4 ± 0.5	89.9 ± 1.8	$70.7~\pm~3.2$	55.1 ± 1.4	50.2 ± 2.6	55.9 ± 2.9	59.0 ± 1.0	2.0 ± 0.4
	COCO	7.9 ± 0.8	35.6 ± 5.2	38.2 ± 20.6	$33.0~\pm~7.7$	14.7 ± 2.2	45.2 ± 6.7	27.6 ± 4.3	43.8 ± 4.8	7.0 ± 4.1	38.4 ± 3.6	$29.1~\pm~5.2$	3.1 ± 0.4
Control Note	LVIS	7.6 ± 0.7	41.5 ± 6.0	36.0 ± 12.7	20.0 ± 2.4	18.7 ± 1.4	50.4 ± 7.1	27.8 ± 5.0	38.7 ± 2.6	8.6 ± 4.2	32.3 ± 3.6	28.1 ± 3.3	3.3 ± 0.3
CenterNet2	LVIS+	10.6 ± 1.1	55.7 ± 5.4	38.4 ± 12.8	35.5 ± 2.9	25.1 ± 1.1	48.4 ± 6.7	36.7 ± 4.2	46.4 ± 3.3	13.9 ± 5.7	37.9 ± 5.3	34.9 ± 3.2	1.9 ± 0.3
	LVIS++	$10.7~\pm~1.0$	$59.4~\pm~5.5$	41.7 ± 13.4	38.2 ± 2.3	26.7 ± 1.0	46.2 ± 6.1	35.6 ± 4.2	47.0 ± 3.5	$15.7~\pm~5.8$	37.1 ± 4.7	35.8 ± 3.4	1.7 ± 0.3

(c) Performance of Cascade R-CNN-P67 and CenterNet2 pre-trained on different datasets.

Domain	Dataset	$\#$ classes $\frac{1}{7}$	# train images	# train anno.	# test images	# test anno.
Aerial	CARPK DOTA VisDrone	1 15 10	989 8949 7019	$\begin{array}{r} 42275 \\ 116515 \\ 381965 \end{array}$	459 8949 1610	47501 116515 75103
Agriculture	DeepFruits MinneApple	7 1	457 403	2553 19373	114 267	590 8811
Animal	ENA24 iWildCam	22 1	7031 21065	7811 31591	$1758 \\ 5313$	1963 7901
Cartoon	Clipart Comic Watercolor	20 6 6	500 1000 1000	$1640 \\ 3215 \\ 1662$	500 1000 1000	1527 3176 1655
Dense Product	SKU110K	1	8804	1298968	2935	431420
Face	WIDER FACE	1	12880	159423	3222	39698
Fashion	DeepFashion2 iMaterialist	13 46	191961 45623	312187 333402	32153 1158	52491 8782
Food	Kitchen Oktoberfest	11 15	4711 1110	24730 2697	2016 85	13430 236
Head	HollywoodHeads	1	10834	17754	3984	7080
Logo	LogoDet-3K OpenLogo	2993 352	126891 18752	$155286 \\ 35264$	31727 8331	38981 15945
Medical	ChestX-Det10 DeepLesion	10 1	2320 27289	6864 28871	459 4831	1477 5122
Person	CrowdHuman WiderPerson	2 1	15000 8000	705967 245053	4370 1000	206231 28424
Security	PIDray SIXray	12 5	29454 7496	39709 15439	9482 1310	9483 2054
Table	table-detection	1	212	244	191	276
Text	COCO-Text	2	19039	163477	4446	37651
Traffic	Cityscapes KITTI LISA TT100K	8 4 5 151	2965 5481 7937 6105	50348 38077 9246 16528	492 7481 1987 3071	9793 52458 2283 8175
Underwater	DUO	4	6617	63999	1100	10518

Table C.5: Statistics of 32 datasets in the extended benchmark. The 10 datasets used in MoFSOD are shown in **bold**.

Table C.6: Performance on the proposed benchmark in AP50 (top) and the average rank (bottom) of different methods on the extended benchmark with 32 datasets. Note that the pre-trained model used for this table is different from the main paper, such that the comparison is fair within these tables only.

Method	1-shot	3-shot	5-shot	10-shot	Mean
TFA [26]	20.6 ± 3.7	25.6 ± 2.0	27.9 ± 1.7	30.9 ± 1.3	26.3 ± 2.4
TFA-cos [26]	20.8 ± 3.6	25.6 ± 2.0	27.7 ± 1.7	30.5 ± 1.3	26.1 ± 2.4
FSCE-base [21]	25.3 ± 4.2	$33.6~\pm~3.9$	37.9 ± 2.0	43.4 ± 1.6	35.1 ± 3.3
FSCE-con [21]	25.8 ± 4.4	34.1 ± 3.7	38.1 ± 1.8	43.3 ± 1.5	35.3 ± 3.3
DeFRCN [16]	25.4 ± 4.0	32.9 ± 3.1	36.7 ± 1.9	41.2 ± 1.9	34.1 ± 3.0
FT 2	26.2 ± 3.3	$\textbf{35.2} \pm 3.5$	39.6 ± 2.3	$\textbf{45.8} \pm 2.1$	36.7 ± 2.9
Method	1-shot	3-shot	5-shot	10-shot	Mean
TFA [26]	4.7 ± 0.1	54.8 ± 0.4	4.7 ± 0.3	$4.7 \pm 0.4 4$	$.7 \pm 0.4$
TFA-cos [26	$] 4.3 \pm 0.$	4.5 ± 0.4	4.7 ± 0.4	$4.8 \pm 0.4 4$	$.6 \pm 0.4$
FSCE-base [2	$[1] 3.3 \pm 0.$	$4\ 3.0 \pm 0.4$	2.9 ± 0.3	$2.8\pm0.3~~3$	$.0 \pm 0.4$
FSCE-con [2]	1] $2.8 \pm 0.$	$4\ 2.7 \pm 0.3$	2.7 ± 0.3	$2.7~\pm~0.3~~2$	$.7 \pm 0.4$
DeFRCN [16	$3.3 \pm 0.$	$5\ 3.5\pm 0.5$	3.5 ± 0.4	$3.7~\pm~0.3~~3$	$.5 \pm 0.5$
FT	2.7 ± 0	.4 2.5 ± 0.4	2.4 ± 0.5	$2.2 \pm 0.5 2$	$.5 \pm 0.5$

Table C.7: Performance of FT on the proposed benchmark with different model architectures and pre-training datasets in AP50 (top) and the average rank (bottom) on the 32 datasets extended benchmark. Note that the pre-trained model used for this table is different from the main paper, such that the comparison is fair within these tables only.

	Arch	Pre-train	1-shot	3-shot	5-shot	10-shot	Mean
_	Faster R-CNN	COCO	26.2 ± 3.3	35.2 ± 3.5	39.6 ± 2.3	45.8 ± 2.1	36.7 ± 2.9
Ca	scade R-CNN-P67	COCO FSODD Unified	26.4 ± 3.3 23.3 ± 3.2 29.2 ± 2.9	35.7 ± 2.6 32.4 ± 2.5 38.7 ± 2.6	40.3 ± 2.0 36.8 ± 1.8 43.4 ± 1.6	46.7 ± 1.6 42.9 ± 1.7 49.7 ± 1.9	$37.3 \pm 2.$ $33.8 \pm 2.$ $40.3 \pm 2.$
	Arch	Pre-tr	ain 1-shot	3-shot	5-shot	10-shot	Mean
	Faster R-CNN	COC	$0 2.8 \pm 0.0$.4 2.9 ± 0.4	3.0 ± 0.3	$3.0 \pm 0.3 2$	$.9 \pm 0.3$
	Cascade R-CNN-F	COC P67 FSOI	$\begin{array}{ccc} & 0 & 2.5 \pm 0. \\ & 0 & 0 & 3.0 \pm 0. \end{array}$	$.3 \ 2.5 \pm 0.2$ $.3 \ 3.1 \pm 0.3$	2.5 ± 0.3 3.3 ± 0.3	$2.4 \pm 0.3 2$ $3.4 \pm 0.3 3$	$.5 \pm 0.3$ $.2 \pm 0.3$

References

- Beery, S., Agarwal, A., Cole, E., Birodkar, V.: The iwildcam 2021 competition dataset. arXiv preprint arXiv:2105.03494 (2021) 3
- Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016) 3
- Ge, Y., Zhang, R., Wang, X., Tang, X., Luo, P.: DeepFashion2: A versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images. In: CVPR (2019) 3
- 4. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: CVPR (2012) 3
- Georgakis, G., Reza, M.A., Mousavian, A., Le, P.H., Košecká, J.: Multiview rgb-d dataset for object instance detection. In: 3DV (2016) 3
- Goldman, E., Herzig, R., Eisenschtat, A., Goldberger, J., Hassner, T.: Precise detection in densely packed scenes. In: CVPR (2019) 3
- Guo, S., Huang, W., Zhang, X., Srikhanta, P., Cui, Y., Li, Y., R.Scott, M., Adam, H., Belongie, S.: The imaterialist fashion attribute dataset. arXiv preprint arXiv:1906.05750 (2019) 3
- Häni, N., Roy, P., Isler, V.: MinneApple: a benchmark dataset for apple detection and segmentation. IEEE Robotics and Automation Letters 5(2), 852–858 (2020) 3
- Hsieh, M.R., Lin, Y.L., Hsu, W.H.: Drone-based object counting by spatially regularized regional proposal network. In: ICCV (2017) 3
- Inoue, N., Furuta, R., Yamasaki, T., Aizawa, K.: Cross-domain weakly-supervised object detection through progressive domain adaptation. In: CVPR (2018) 3
- 11. Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., Darrell, T.: Few-shot object detection via feature reweighting. In: ICCV (2019) 1
- Liu, C., Li, H., Wang, S., Zhu, M., Wang, D., Fan, X., Wang, Z.: A dataset and benchmark of underwater object detection for robot picking. In: 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) (2021) 3
- Liu, J., Lian, J., Yu, Y.: Chestx-det10: Chest x-ray dataset on detection of thoracic abnormalities. arXiv preprint arXiv:2006.10550 (2020) 3
- Miao, C., Xie, L., Wan, F., Su, C., Liu, H., Jiao, J., Ye, Q.: Sixray: A large-scale security inspection x-ray benchmark for prohibited item discovery in overlapping images. In: CVPR (2019) 3
- Mogelmose, A., Trivedi, M.M., Moeslund, T.B.: Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey. IEEE Transactions on Intelligent Transportation Systems 13(4), 1484–1497 (2012) 3
- Qiao, L., Zhao, Y., Li, Z., Qiu, X., Wu, J., Zhang, C.: DeFRCN: Decoupled faster r-cnn for few-shot object detection. In: ICCV (2021) 8
- Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C.: DeepFruits: A fruit detection system using deep neural networks. sensors 16(8), 1222 (2016) 3
- 18. sgrpanchal31: table-detection-dataset. https://github.com/sgrpanchal31/ table-detection-dataset (2018) 3
- Shao, S., Zhao, Z., Li, B., Xiao, T., Yu, G., Zhang, X., Sun, J.: CrowdHuman: A benchmark for detecting human in a crowd. arXiv preprint arXiv:1805.00123 (2018) 3
- 20. Su, H., Zhu, X., Gong, S.: Open logo detection challenge. In: BMVC (2018) 3
- Sun, B., Li, B., Cai, S., Yuan, Y., Zhang, C.: Fsce: Few-shot object detection via contrastive proposal encoding. In: CVPR (2021) 1, 4, 5, 6, 8

- 10 K. Lee et al.
- Veit, A., Matera, T., Neumann, L., Matas, J., Belongie, S.: Coco-text: Dataset and benchmark for text detection and recognition in natural images. arXiv preprint arXiv:1601.07140 (2016) 3
- Vu, T.H., Osokin, A., Laptev, I.: Context-aware cnns for person head detection. In: ICCV (2015) 3
- 24. Wang, B., Zhang, L., Wen, L., Liu, X., Wu, Y.: Towards real-world prohibited item detection: A large-scale x-ray benchmark. In: CVPR (2021) 3
- Wang, J., Min, W., Hou, S., Ma, S., Zheng, Y., Jiang, S.: LogoDet-3K: A large-scale image dataset for logo detection. arXiv preprint arXiv:2008.05359 (2020) 3
- Wang, X., Huang, T.E., Darrell, T., Gonzalez, J.E., Yu, F.: Frustratingly simple few-shot object detection. In: ICML (2020) 1, 4, 5, 6, 8
- Wang, X., Cai, Z., Gao, D., Vasconcelos, N.: Towards universal object detection by domain attention. In: CVPR (2019) 3
- Xia, G.S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L.: DOTA: A large-scale dataset for object detection in aerial images. In: CVPR (2018) 3
- 29. Yan, K., Wang, X., Lu, L., Zhang, L., Harrison, A.P., Bagheri, M., Summers, R.M.: Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. In: CVPR (2018) 3
- Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: A face detection benchmark. In: CVPR (2016) 3
- Yousif, H., Kays, R., He, Z.: Dynamic programming selection of object proposals for sequence-level animal species classification in the wild. IEEE Transactions on Circuits and Systems for Video Technology (2019) 3
- Zhang, S., Xie, Y., Wan, J., Xia, H., Li, S.Z., Guo, G.: WiderPerson: A diverse dataset for dense pedestrian detection in the wild. IEEE Transactions on Multimedia 22(2), 380–393 (2019) 3
- 33. Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., Ling, H.: Detection and tracking meet drones challenge. IEEE TPAMI (2021). https://doi.org/10.1109/TPAMI.2021.3119563 3
- Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets V2: more deformable, better results. In: CVPR (2019) 4
- 35. Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., Hu, S.: Traffic-sign detection and classification in the wild. In: CVPR (2016) 3
- Ziller, A., Hansjakob, J., Rusinov, V., Zügner, D., Vogel, P., Günnemann, S.: Oktoberfest food dataset. arXiv preprint arXiv:1912.05007 (2019) 3