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1 Non-target Slices as Motivation

For the non-target slice set defined in the paper, the images are derived from
those slices in CT or MRI scans whose ground truths are all black. As shown in
Fig. 1, these non-target slices contain rich anatomical knowledge, which can be
utilized as background information to help the contrastive learning and guide
the segmentation of the query image in the few-shot tasks.

Fig. 1. (a) Illustrations of the non-target slices and target slices. (b) The motivation
of utilizing non-target slices for contrastive learning

2 Detailed Process of the CIP Module

In order to show the operation process of the constrained iterative prediction
(CIP) module more concretely, we further provide the corresponding algorithm,
as shown in Algorithm 1.

3 More Experimental Results

3.1 More statistical results

Firstly, we show more numerical results to evaluate the impacts of different
balance parameters for the contrastive losses in the total loss function (Equ.
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Algorithm 1 Constrained Iterative Prediction

Input:
The query feature f q, the support feature f s, the support mask ys, the encoder
features {f q

e} and {f s
e}

Output:
The newest predicted query mask pqnew

1: Given the query feature f q of the final layer in the decoder and other information
(f s,ys, {f q

e}, and {f s
e}), obtain the optimized prediction mask pqnew

2: I = number of the total iteration, i = index of I
3: Employ the generic classifier (1×1 convolution and softmax ) to generate the initial

query prediction pqi , i = 0
4: Initialize pqnew = pqi , i = 0
5: Initialize the similarity consistency constraint (SCC) as follows:

Compute the similarity map Sm between ys and pq
i , i = 0; compute the similarity

map Sf between {f q
e} and {f s

e}; calculate the MSE loss between Sm and Sf to get
initial loss Li

MSE , i = 0
6: Initialize Lmin

MSE = Li
MSE , i = 0

7: for all i = 1, 2, ..., I do
8: Enter the prediction head (PredHead):

Multiply the f q and pqnew to get f q
m; Send f s, ys and f q

m to prior embedding
module to get f̂

q

m; The f̂
q

m is applied to a series of convolutions and the generic
classifier to obtain a new prediction mask pqi

9: Enter the SCC module:
Compute the similarity map Sm between ys and pq

i ; compute the similarity map
Sf between {f q

e} and {f s
e}; calculate the MSE loss between Sm and Sf to get

the current MSE loss Li
MSE

10: if Li
MSE < Lmin

MSE then
11: Update the newest predicted mask pqnew = pqi
12: Update Lmin

MSE = Li
MSE

13: else
14: Continue
15: end if
16: end for
17: return pqnew

6), as shown in Table 1. In addition, the Table 2 also demonstrates the effect of
different iteration numbers of CIP module on the final segmentation results. And
computational cost and parameters of models with different iterations in CIP are
also shown in Table. 2. Finally, To evaluate if our improvement is statistically
significant, we additionally conducted a Wilcoxon rank-sum test to compare our
method with some of our competitors. From the p-values shown in Tables 3, we
can clearly see that our method has a statistically significant improvement in
terms of the Dice metric at the 5% level (all p-values are less than 0.05).
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Table 1. Ablation study results (in Dice score) on the CHAOS-T2 dataset for balance
parameters of contrastive losses

λcpcl λppcl λccl Liver(%) RK(%) LK(%) Spleen(%) Mean(%)

0.10 0.10 0.08 61.39 74.27 68.84 70.23 68.68
0.10 0.08 0.06 64.61 75.49 68.42 72.87 70.35
0.08 0.14 0.03 66.67 79.72 70.35 74.60 72.84
0.08 0.12 0.03 69.65 78.07 72.89 73.39 73.50
0.08 0.12 0.04 67.54 82.16 72.34 73.22 73.82
0.08 0.12 0.06 69.94 83.75 76.90 74.86 76.36

Table 2. Ablation study results (in Dice score, computation costs and parameter
numbers) on the CHAOS-T2 dataset for different iteration numbers (denoted as I) of
the CIP module

I Liver(%) RK(%) LK(%) Spleen(%) Mean(%) Flops(G) Params(M)

0 56.91 75.23 67.19 69.52 67.21 149.40 35.04
1 56.94 75.54 69.57 69.54 67.90 157.03 35.04
2 61.08 76.77 70.34 69.88 69.52 164.12 35.04
3 67.53 78.47 72.39 71.93 72.58 171.50 35.04
4 68.62 81.18 75.88 72.50 74.55 178.89 35.04
5 69.94 83.75 76.90 74.86 76.36 186.27 35.04
6 70.03 83.36 76.29 74.59 76.07 193.66 35.04
7 70.11 83.58 76.17 74.62 76.12 201.05 35.04
8 69.85 83.50 76.52 74.99 76.22 208.43 35.04
9 69.87 83.73 76.73 74.81 76.29 215.21 35.04

3.2 More visualized results

For the proposed CIP and DCL (including CCL and PCL) modules, more vi-
sualized ablation comparisons on the CHAOS-T2 dataset are shown in Fig. 2.
Besides, we also present more visualized comparisons with classic and state-of-
the-art methods (sSENet, SSL-ALPNet, and RP-Net), as shown in Fig. 3 and
Fig. 4.

Table 3. Statistical significance analysis results (p-values on the Dice metric) on the
CHAOS-T2 dataset for different methods. pv: p-value

Pairs Liver(pv) RK(pv) LK(pv) Spleen(pv) Mean(pv)

PANet vs. Ours 2.53 × 10−7 3.87 × 10−8 5.79 × 10−8 7.13 × 10−7 2.85 × 10−8

sSENet vs. Ours 1.82 × 10−8 2.88 × 10−7 3.87 × 10−7 8.25 × 10−7 2.74 × 10−7

SSL-ALPNet vs. Ours 1.30 × 10−4 5.63 × 10−4 3.69 × 10−4 1.47 × 10−5 5.60 × 10−4

RP-Net vs. Ours 2.19 × 10−4 9.04 × 10−3 8.17 × 10−3 9.98 × 10−3 1.01 × 10−2
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Fig. 2. More visual feature maps of the CIP and DCL modules on the CHAOS-
T2 dataset. The warmer colors represent the better discriminative features. DCL:
CCL+PCL; PCL: CPCL+PPCL

Fig. 3. More visual comparisons with different methods on the CHAOS-T2 dataset
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Fig. 4. More visual comparisons with different methods on the Synapse dataset


