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In this supplementary material, we first elaborate the difference between
datasets that are sensitive or insensitive to action ordering in Sec. A. In Sec. B,
we provide additional experiment results of our method on Something-Something
V2 dataset. We then evaluate the performance of our method on two action
recognition benchmarks, namely UCF-101 and HMDB-51 in Sec. C.

A Order-Sensitive Datasets vs Order-Insensitive Datasets

Here, we discuss the difference between datasets that are sensitive or insensitive
to action ordering. For order-sensitive datasets, temporal cues (e.g., temporal
order-preserving prior [16,2,3,9]) are essential in distinguishing between video
categories. For example, in Something-Something V2, deciding whether a video
belongs to ”Pulling sth from left to right” or ”Pushing sth from right to left” must
consider the positional changes of an object presented in the video. Fig. S1 shows
how videos from the two classes in Something-Something V2 can be aligned with
each other. On the other hand, videos in order-insensitive datasets like Kinetics
loosely rely on temporal cues. Their video classes can mostly be distinguished
just with the appearance information.

B Additional Results

Running time. During training, we use the same ResNet-50 encoder with a lin-
ear classifier on top as the baseline [20], yielding the same number of parameters.
At inference stage, we discard the linear classifier and use the trained ResNet-
50 to extract frame features. In our implementation, our method has the same
number of epochs (25 epochs) and roughly the same training (12 hours) and
inference time (0.2 and 0.5 secs for a 1-shot and 5-shot episode) as the baseline.
Ablation results of α and ν. We perform ablation study on the two hyper-
parameter α and ν. We first fix ν = 0.1 and vary the value of α in the range
[0.01, 1.0]. Results are shown in Fig. S2(a). As we can observe, increasing the
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Fig. S1. a) Example videos from Something-Something V2. The two videos can be
aligned with each other in terms of appearance. To classify correctly, the model must
consider the order of video frames. b) Example videos from Kinetics. Classes of Kinetics
are mostly different in appearance and sometimes do not have a fixed frame order.

value of α improves the performance consistently. We then fix α = 0.05 and vary
the value of ν in the range [0.01, 1.0]. Results are shown in Fig. S2(b). ν = 0.1
achieves the best results for both 1-shot and 5-shot settings.
Additional qualitative results. We provide additional qualitative results of
inductive inferences on 2-way 1-shot tasks of Something-Something V2 in Fig. S3.

C Few-Shot Action Recognition Results on UCF-101 and
HMDB-51

So far we have focused on the problem of few-shot video classification. We now
consider a related problem of few-shot action recognition [17,10,19,1]. The main
difference between video classification and action recognition is that, in video
classification, videos/classes can describe general contents (e.g., “sled dog racing”
in Kinetics), which are not limited to human actions as in action classification. In
this section, we evaluate the performance of our method on two few-shot action
recognition datasets, including UCF-101 [15] and HMDB-51 [8]. UCF-101 is an
action recognition dataset consisting of 13,320 YouTube videos of 101 action
classes. For HMDB-51, there are 6,849 videos collected from different sources,
i.e., movies, Prelinger Archive, YouTube, and Google videos. For both datasets,
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Fig. S2. Ablation results of a) α and b) ν.

we follow the splits from [19], which divide UCF-101 into 70/10/21 classes and
HMDB-51 into 31/10/10 classes for training/validation/testing respectively.
Implementation Details. We apply the same preprocessing steps that we use
for Kinetics and Something-Something V2 datasets to UCF-101 and HMDB-
51 datasets. Specifically, a video is divided into M = 8 segments and a frame is
sampled randomly from each segment. We use the SGD optimizer with an initial
learning rate of 0.0005 for both datasets. For UCF-101, the model is trained for
30 epochs, and we reduce the learning rate to 10−4, 10−5, and 10−6 at epochs
15, 20, and 25 respectively. For HMDB-51, the model is trained for 25 epochs,
and the learning rate is reduced to 10−4, 10−5, and 10−6 at epochs 10, 15, and
20 respectively.

C.1 The Relative Importance of Appearance and Temporal Cues
on UCF-101 and HMDB-51

We investigate the effectiveness of the hyperparameter β (in Eq. 9 in the main
paper) in the inductive and transductive settings on the UCF-101 and HMDB-
51 datasets. Tabs. S1 and S2 provide the mean accuracy with 95% confidence
interval on 10,000 episodes sampled from the validation set.

Tab. S1 shows that, in the inductive setting, appearance cues are more impor-
tant than temporal cues for both datasets. In addition, utilizing both appearance
and temporal cues (β ∈ [0.2, 0.4]) yields minor improvements over using appear-
ance cues only (β = 0). Similarly, for the transductive results in Tab. S2, ap-
pearance cues play a more important role than temporal cues for both datasets.
Moreover, leveraging both appearance and temporal cues (β ∈ [0.2, 0.4]) leads
to significant improvements on HMDB-51 but marginal performance gains on
UCF-101, as compared to using appearance cues only (β = 0).

C.2 Comparison with Previous Few-Shot Action Recognition
Methods

We compare our method with previous works on the two benchmarks UCF-101
and HMDB-51.
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Fig. S3. Qualitative Results of 2-way 1-shot Tasks on Something-Something
V2. For each task, we present the appearance similarity matrix D between the query
video and each support video in the second column. In the third column, we show the
row-wise normalized version D̃. Finally, we show the predictions of the two similarity
scores and the final prediction. Ground truth class labels are shown at the top.

Inductive. Inductive results are presented in Tab. S3. The competing meth-
ods include from few-shot action recognition approaches, i.e., FAN [17], Proto-
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Table S1. Ablation study on the relative importance of the appearance and temporal
terms in computing the predictive distribution of the inductive inference on the UCF-
101 and HMDB-51 datasets. Results are mean accuracy with 95% confidence interval
on 10,000 episodes sampled from validation set.

UCF-101 HMDB-51
β 1-shot 5-shot 1-shot 5-shot

1.0 24.96± 0.37 30.17± 0.39 24.77± 0.37 32.24± 0.39
0.8 35.32± 0.41 80.24± 0.37 30.13± 0.39 53.14± 0.43
0.6 67.90± 0.41 94.47± 0.20 49.52± 0.42 79.58± 0.34
0.4 84.55± 0.31 95.19± 0.19 65.78± 0.38 82.27± 0.32
0.2 84.63± 0.31 95.16± 0.19 65.77± 0.38 82.26± 0.32
0.0 84.60± 0.31 95.15± 0.19 65.72± 0.38 82.21± 0.32

Table S2. Ablation study on the relative importance of the appearance and temporal
terms in computing the assignment function and the predictive distribution of the
transductive inference on the UCF-101 and HMDB-51 datasets. Results are mean
accuracy with 95% confidence interval on 10,000 episodes sampled from validation set.

UCF-101 HMDB-51
β 1-shot 5-shot 1-shot 5-shot

1.0 83.46± 0.35 93.59± 0.23 62.01± 0.44 78.27± 0.39
0.8 88.95± 0.32 97.34± 0.17 70.26± 0.46 87.70± 0.35
0.6 91.73± 0.31 98.46± 0.14 74.11± 0.48 89.92± 0.34
0.4 92.72± 0.30 98.74± 0.13 75.08± 0.49 90.23± 0.35
0.2 92.98± 0.31 98.75± 0.13 75.38± 0.50 90.12± 0.35
0.0 92.91± 0.31 98.68± 0.14 75.02± 0.49 89.39± 0.36

GAN [10], ARN [19], and ITA [1], as well as a recent few-shot video classification
approach, namely Baseline Plus [20]. ARN, ProtoGAN, and ITA use pretrained
C3D network as their backbone, while FAN use a pretrained Dense-121 back-
bone network. Their results are taken from the original papers. The results of
Baseline Plus are from our re-implementation. The datasets used for backbone
network pretraining are presented in Tab. S3, except for FAN which does not
mention that detail in their paper. Tab. S3 shows that CMOT performs the best,
followed by ITA, which achieves the second best performance across all settings
on both datasets. However, we note that CMOT and ITA use a C3D backbone,
which is capable of extracting spatiotemporal information, and pretrained on
a video dataset (i.e., Sports1M, Kinetics-400). In contrast, we use a 2D-based
backbone (i.e., ResNet-50), and pretrain it on ImageNet dataset.

Transductive. Next, we consider the transductive setting. We re-implement
three transductive techniques from few-shot image classification, i.e., Soft K-
means [13], Bayes K-means [11], Mean-shift [11] as our competing methods.
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Table S3. Comparison to the state-of-the-art methods in the inductive setting on
the UCF-101 and HMDB-51 datasets. † denotes results from our re-implementation.

Pretrained UCF-101 HMDB-51
Method Backbone Dataset 1-shot 5-shot 1-shot 5-shot

ProtoGAN [10] C3D [18] Sports1M [6] 61.70± 1.60 79.70± 0.80 34.40± 1.30 50.90± 0.60
FAN [17] Densenet-121 [5] - 71.80± 0.10 86.50± 0.20 50.20± 0.20 67.60± 0.10
ARN [19] C3D [18] Sports1M [6] 62.10± 1.00 84.80± 0.80 44.60± 0.90 59.10± 0.80

Baseline Plus [20]† Resnet-50 [4] ImageNet [14] 81.06± 0.33 92.85± 0.22 57.56± 0.42 72.70± 0.37
ITA [1] C3D [18] Kinetics-400 [7] 88.71± 0.19 96.78± 0.08 63.43± 0.28 79.69± 0.20

CMOT [12] C3D [18] Sports1M [6] 90.40± 0.40 95.70± 0.30 66.90± 0.50 81.50± 0.40

Ours Resnet-50 [4] ImageNet [14] 84.93± 0.30 95.87± 0.17 59.57± 0.40 76.85± 0.36

Table S4. Comparison to the state-of-the-art methods in transductive setting on
the UCF-101 and HMDB-51 datasets. Results of other methods are from our re-
implementation on the trained feature extractor of [20].

UCF-101 HMDB-51
Method 1-shot 5-shot 1-shot 5-shot

Soft K-means [13] 90.26± 0.34 97.67± 0.17 64.44± 0.52 80.29± 0.45
Bayes K-means [11] 81.26± 0.33 93.13± 0.22 57.85± 0.42 73.44± 0.37

Mean-shift [11] 81.25± 0.33 89.35± 0.26 57.82± 0.42 67.96± 0.43

Ours 94.18± 0.28 99.06± 0.11 68.07± 0.52 85.01± 0.42

Results are shown in Tab. S4. To our best knowledge, we are the first to consider
transductive inference in few-shot action recognition. As it is evident from the
results, our method significantly outperforms the competing methods by large
margins, i.e., 2− 4% on UCF-101 and 4− 5% on HMDB-51.
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