
Supplementary material: Temporal and
cross-modal attention for audio-visual zero-shot

learning

In the supplementary material, we provide additional details about baselines
(Section 1), and present further model ablations (Section 2). Additionally, we
study t-SNE visualisations for TCaF and [3] (Section 3), and provide a com-
parison of the computational complexity of TCaF and some of the baselines
(Section 4).

1 Additional details about baselines

In the following, we detail our adaptations of Attention Fusion [1] and of the
Perceiver [2] to the (G)ZSL setting (which we briefly summarised in Section 4.2
of our manuscript).

1.1 Attention Fusion

In order to use Attention Fusion [1] in the (G)ZSL setting, we take the same
temporal audio and visual features as inputs as TCaF. Following TCaF, we
embed the input features into the same feature dimension using Aenc and Venc.
Instead of directly mapping to the number of classes, as the authors originally
proposed, Aenc and Venc map the features to Rddim . The embedded features are
then temporally averaged to obtain a single ddim−dimensional feature vector for
each modality. The attention weight α, which is used for fusing both modalities,
is computed using the channel-wise concatenation of the audio and visual em-
beddings through a linear layer fattn : R2∗ddim → Rddim , followed by a sigmoid
function. Both modalities are then fused to create the output token oc through
oc = α ⊙ ϕa,avg + (1 − α) ⊙ ϕv,avg, where ϕa,avg and ϕv,avg are the temporally
averaged audio and visual features. oc is then projected using the same projec-
tion function Oproj , decoder Do, and text embedding projections as in TCaF.
We train Attention Fusion using the same learning rate and loss functions as
TCaF.

1.2 Perceiver

The Perceiver [2] takes the same audio and visual features as input as TCaF.
For consistency between frameworks, we again embedded the input features to
the same feature dimension using Aenc and Venc, and equip both TCaF and the
Perceiver with the same temporal and modality information by adding positional
embeddings as described in the main paper. Our goal was to directly compare our
cross-attention mechanism with the Perceiver attention. Therefore, we adapted
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the cross-attention, self-attention and dense layer blocks of the Perceiver to use
the same internal dimensions as TCaF. We also added a dropout layer at the
end of dense layer blocks to match the dense blocks in TCaF. For the randomly
initialised latent array, we use 64 latent tokens with dimension Rddim for all
datasets. Increasing the number of latent tokens did not provide a boost in
performance, but significantly increased the computational costs. One of the
latent tokens is used as the output classification token co. We use one cross-
attention block and one self-attention block per layer without weight sharing
and use the same number of layers as TCaF. This results in just a slightly
higher number of parameters for the Perceiver than for our TCaF. The output
token co is projected using the projection function Oproj and the decoder Do.
The computations for the text embeddings are analogous to TCaF. We train
the Perceiver using the same learning rate and loss functions as our model.

2 Additional model ablations

In this section, we first study the impact of using temporal embeddings (Sec-
tion 2.1) and of the number and design of the cross-attention layers in TCaF
(Section 2.2). Next, we evaluate the impact on performance when adding noise
to the audio modality (Section 2.3). Finally, we present results of transforming
TCaF to [3] (Section 2.4).

2.1 Influence of using temporal information

In the following, we investigate the influence of using temporal information when
learning multi-modal video representation for (G)ZSL with TCaF. Since the op-
erations in our audio-visual transformer layers (cf. Section 3.2 in the manuscript)
are invariant to permutation, the feature tokens are additionally equipped with
temporal information through the addition of positional embeddings post. With-
out temporal embeddings, the model is unable to put data from one time step
in temporal relation to information from the other time steps. Temporal embed-
dings therefore allow the model to understand the concept of time.

Table 1 shows results for training and evaluating TCaF with (+) and without
(−) temporal embeddings (post). The highest harmonic mean is achieved when
using temporal embeddings. For instance for ActivityNet-GZSLcls, our model
that does not use temporal embeddings (−post) obtains only a HM of 8.69%
and a ZSL score of 5.53%, compared to a HM of 12.20% and a ZSL score of
7.96% when using temporal embeddings. Similar observations can be made for
VGGSound-GZSLcls and UCF-GZSLcls, showing the importance of temporal
information for learning strong video representations.



Supp. material: Temporal and cross-modal attention for audio-visual ZSL 3

Positional embeddings VGGSound-GZSLcls UCF-GZSLcls ActivityNet-GZSLcls

S U HM ZSL S U HM ZSL S U HM ZSL

−post 15.78 4.66 7.19 4.97 27.35 26.02 26.67 28.06 21.80 5.43 8.69 5.53

+post (TCaF) 12.63 6.72 8.77 7.41 67.14 40.83 50.78 44.64 30.12 7.65 12.20 7.96

Table 1. Influence of temporal information provided through positional embeddings
(post) on the (G)ZSL performance on the VGGSound-GZSLcls, UCF-GZSLcls, and
ActivityNet-GZSLcls datasets.

Layer configurations VGGSound-GZSLcls UCF-GZSLcls ActivityNet-GZSLcls

S U HM ZSL S U HM ZSL S U HM ZSL

1 layer w/o FF 19.70 4.47 7.29 4.66 63.30 26.45 37.31 27.85 15.10 4.59 7.04 4.63

1 layer 17.95 4.78 7.55 5.13 40.07 29.40 33.92 29.74 28.22 4.85 8.27 4.89

1/2∗(all layers) w/o FF 11.33 4.25 6.18 4.59 38.72 23.17 28.99 23.28 8.13 3.35 4.75 3.40

1/2∗(all layers) 12.08 4.69 6.75 5.12 77.19 30.18 43.40 34.18 28.65 6.04 9.98 6.25

1/2∗(all layers) +Aself 14.62 4.56 6.96 4.97 53.05 34.83 42.05 35.84 31.38 5.93 9.97 6.51

all layers w/o FF 14.41 4.28 6.60 4.59 32.57 25.77 28.78 28.86 7.44 3.27 4.54 3.33

all layers 12.63 6.72 8.77 7.41 67.14 40.83 50.78 44.64 30.12 7.65 12.20 7.96

Table 2. Varying the number of cross-attention layers in TCaF and the use of feed
forward (FF) functions in the cross-attention layers.

2.2 Impact of using different amounts of cross-attention layers and
of varying the cross-attention layer design

In Table 2, we present ablations on the number of cross-attention layers used
in our model. Furthermore, we investigate the relevance of using feed forward
functions (FF) in our cross-attention layers.

For TCaF, we used 8 cross-attention layers on VGGSound-GZSLcls (all lay-
ers). On the UCF-GZSLcls and ActivityNet-GZSLcls datasets, we used 6 layers
(all layers). We observe that using more layers is beneficial for GZSL and ZSL
performance across all datasets. Moreover, we observe that, in general, elimi-
nating the feed forward functions leads to a decrease in performance. Finally,
using only half of the layers jointly with self-attention (1/2∗(all layers) +Aself )
leads to worse overall HM performance than using half of the layers without
self-attention (1/2∗(all layers)). This is in line with the experiments in the main
paper, where adding the self-attention leads to worse results.

This ablation shows that using only cross-attention is beneficial even when
using a different number of layers. Furthermore, using more cross-attention layers
that are equipped with feed forward functions brings a boost in performance.

2.3 Impact of noise in audio stream on GZSL performance

In this section, we study how the GZSL performance (HM) of TCaF decreases
when noise is added to increasing temporal portions of the audio signal on all
three datasets. We study both TCaF and TCaF +Aself in Fig. 1. It can be
observed that an increase in the proportion of noise leads to a decrease in the
GZSL performance for both models on all three datasets. Furthermore, it can
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be observed that TCaF is significantly more robust to perturbations on UCF-
GZSLcls and slightly more robust on VGGSound-GZSLcls. On the other hand,
we can observe that on ActivityNet-GZSLcls the trend is reversed, with TCaF
+Aself being slightly more robust. Overall, it can be argued that TCaF is more
robust across all three datasets than TCaF +Aself .

% of noisy audio UCF-GZSLcls % of noisy audio VGGSound-GZSLcls % of noisy audio ActivityNet-GZSLcls

H
M
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M

Fig. 1. Robustness of TCaF and TCaF +Aself to noise added to different proportions
of the audio stream on UCF-GZSLcls, VGGSound-GZSLcls and ActivityNet-GZSLcls.

2.4 Transforming TCaF into [3]

Our TCaF builds on the AVCA [3] framework for audio-visual GZSL. To high-
light the benefits of TCaF compared to AVCA, we show results for transforming
TCaF into AVCA [3] in Table 3.

TCaF exploits temporal information and obtains a HM performance of
8.77% on VGGSound-GZSLcls compared to a HM of 7.65% (TCaF avg input)
when using temporally averaged inputs. Moreover, TCaF uses an enhanced
cross-modal attention to effectively gather multi-modal information. On the
other hand, the attention mechanism of [3] uses temporally averaged feature in-
puts, which leads to a HM of 6.82% on VGGSound-GZSLcls ([3]). Additionally,
TCaF uses a single output branch and a classification token to aggregate the
multi-modal information. In contrast, [3] uses two branches and no classification
token which leads to a HM of 6.27% (w/o class. token) on VGGSound-GZSLcls.
Finally, our training objective avoids triplet losses, i.e. there is no overhead to
train with positive and negative pairs. Using triplet losses similar to those used in
[3] leads to a lower performance (TCaF + ltriplet) than TCaF. The same trend
can be observed for the other datasets, proving that our architectural choices
are more suitable for the audio-visual (G)ZSL task.

3 t-SNE comparison between TCaF and [3]

We show t-SNE visualisations that highlight the difference between TCaF and
[3] in Fig. 2. It can be observed that in the case of [3], the classes overlap more
than in the case of TCaF. In particular, this can be observed for the unseen
classes. Moreover, for [3], the clusters are less concentrated than for TCaF.
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Model VGGSound-GZSLcls UCF-GZSLcls ActivityNet-GZSLcls

S U HM ZSL S U HM ZSL S U HM ZSL

[3] 12.63 6.19 8.31 6.91 63.15 30.72 41.34 37.72 16.77 7.04 9.92 7.58

TCaF +att from [3] 10.08 5.16 6.82 5.41 39.47 28.85 33.33 29.79 5.58 2.37 3.33 2.43

TCaF avg input 11.69 5.69 7.65 6.16 12.00 20.46 15.13 20.59 16.43 3.26 5.44 3.42

w/o class. token 18.40 3.78 6.27 4.25 31.70 32.57 32.13 33.26 11.87 3.80 5.75 3.90

TCaF +ltriplet 14.51 4.78 7.19 5.06 71.61 35.91 47.83 40.00 18.74 6.58 9.74 6.63

TCaF 12.63 6.72 8.77 7.41 67.14 40.83 50.78 44.64 30.12 7.65 12.20 7.96

Table 3. Transforming TCaF into [3]

Fig. 2. t-SNE visualisations for five seen (apply eye makeup, archery, baby crawling,
basketball dunk, bowling) and two unseen (playing flute, writing on board) test classes
from the UCF-GZSL dataset, showing the difference between TCaF and [3]. Textual
class label embeddings are visualised with a square.

4 Computational complexity

The computational complexity increases with the length of the temporal se-
quence. Using the average duration of the data in UCF-GZSLcls and a single
forward pass for a batch of 256 samples, TCaF requires 51.8 GFLOPS vs 174.1
for [2] and 4.4 for [3]. The Perceiver [2] uses a transformer architecture along
with the temporal dimension, while [3] does not use the temporal dimension.
Thus, it can be observed that TCaF is more resource-efficient than the most
similar baseline. TCaF was trained on a single NVIDIA 2080Ti GPU.

References

1. Fayek, H.M., Kumar, A.: Large scale audiovisual learning of sounds with weakly
labeled data. In: IJCAI (2020)

2. Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., Carreira, J.: Perceiver:
General perception with iterative attention. In: ICML (2021)

3. Mercea, O.B., Riesch, L., Koepke, A.S., Akata, Z.: Audio-visual generalised zero-
shot learning with cross-modal attention and language. In: CVPR (2022)


	Supplementary material: Temporal and cross-modal attention for audio-visual zero-shot learning

