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Abstract. Online continual learning (online CL) studies the problem
of learning sequential tasks from an online data stream without task
boundaries, aiming to adapt to new data while alleviating catastrophic
forgetting on the past tasks. This paper proposes a framework Con-
trastive Vision Transformer (CVT), which designs a focal contrastive
learning strategy based on a transformer architecture, to achieve a bet-
ter stability-plasticity trade-off for online CL. Specifically, we design a
new external attention mechanism for online CL that implicitly captures
previous tasks’ information. Besides, CVT contains learnable focuses for
each class, which could accumulate the knowledge of previous classes
to alleviate forgetting. Based on the learnable focuses, we design a fo-
cal contrastive loss to rebalance contrastive learning between new and
past classes and consolidate previously learned representations. More-
over, CVT contains a dual-classifier structure for decoupling learning
current classes and balancing all observed classes. The extensive exper-
imental results show that our approach achieves state-of-the-art perfor-
mance with even fewer parameters on online CL benchmarks and effec-
tively alleviates the catastrophic forgetting.

Keywords: Online continual learning, Vision Transformer, Supervised
contrastive learning

1 Introduction

One of the major challenges in research on artificial neural networks is develop-
ing the ability to accumulate knowledge over time from a non-stationary data
stream [7,29,38]. Although most successful deep learning techniques can achieve
excellent results on pre-collected and fixed datasets, they are incapable of adapt-
ing their behavior to the non-stationary environment over time [18,75]. When
streaming data comes in continuously, training on the new data can severely in-
terfere with the model’s previously learned knowledge of past data, resulting in
a drastic drop in performance on the previous tasks. This phenomenon is known
as catastrophic forgetting or catastrophic interference [54,61]. Continual learning
(also known as lifelong learning or incremental learning) [62,63,79,75,80,95,18]
aims to solve this problem by maintaining and accumulating the acquired knowl-
edge over time from a stream of non-stationary data.
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Fig. 1. The overall framework of Contrastive Vision Transformer (CVT).

Continual learning requires neural networks to be both stable to prevent
forgetting as well as plastic to learn new concepts, which is referred to as the
stability-plasticity dilemma [55,27]. The early works have focused on the Task-
aware protocol, which selects the corresponding classifier using oracle knowledge
of the task identity at inference time [2,46,65,69,18]. For example, regularization-
based methods penalize the changes of important parameters when learning new
tasks and typically assign a separate classifier for each task [12,42,64,85,93]. Re-
cent studies have focused on a more practical Task-free protocol, which evaluates
the network on all classes observed during training without requiring the iden-
tity of the task [3,81,8,95,37,90,13]. Among them, rehearsal-based methods that
store a small set of seen examples in a limited memory for replaying have demon-
strated promising results [4,62,9,76]. This paper focuses on a more realistic and
challenging setting: online continual learning (online CL) [34,50,67], where the
model learns a sequence of classification tasks with a single pass over the data
and without task boundaries. There are also Task-free and Task-aware protocols
in online CL.

Inspired by recent breakthroughs in self-supervised learning [16,11,30,72], we
find that the knowledge learned by supervised contrastive learning [31,41,28] re-
veals greater robustness and transferability. The general and transferable knowl-
edge is the essence of what online CL seeks to explore, which could effectively
help mitigate forgetting. Unfortunately, it is challenging to employ contrastive
learning in the continual setting. There are two main issues as follows: 1) Con-
trastive learning requires informative negative samples to learn and distinguish
different clusters. However, in online CL, previous task data is unavailable or
very limited, which causes severe imbalanced contrast between past and new
classes. 2) The contrastively learned knowledge may suffer from forgetting since
the distribution of the data stream is continually changing.

Considering the superior modeling capability of Vision Transformers [21] re-
cently demonstrated on computer vision tasks [57,84,26,92,17], we take the uti-
lization of the potential of attention mechanism [74] to develop online CL. Over-
all, we strategically integrate contrastive learning and transformer to model the
online data stream. We propose a novel framework, Contrastive Vision Trans-
former (CVT), to alleviate the forgetting problem and tackle the above imbal-
ance issue of contrastive learning in online CL. An overview of the framework is
illustrated in Fig. 1. Specifically, we newly design an effective and efficient trans-
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former architecture with external attention to implicitly capture previous tasks’
information and reduce the number of parameters. CVT contains learnable fo-
cuses for each class, which could accumulate the knowledge of previous classes to
alleviate forgetting. Based on the learnable focuses, we design a focal contrastive
loss at the attention level to rebalance contrastive learning between new and past
classes and improve the inter-class distinction and intra-class aggregation. More-
over, CVT contains a dual-classifier structure: an injection classifier is used to
inject representation of stream data into the model, mitigating interference with
previous knowledge; and an accumulation classifier focuses on integrating the
previous and new knowledge in a balanced manner.

We systematically compare state-of-the-art and well-established methods for
the online CL problem in both the Task-free and Task-aware protocols. Exper-
imental results show that the CVT framework significantly outperforms other
approaches in terms of accuracy and forgetting, even with fewer parameters.
Ablation study validates each component of the proposed framework.
The main contributions of this paper are three-fold:

– We propose a novel framework Contrastive Vision Transformer (CVT) to
achieve a better stability-plasticity trade-off for online CL. CVT contains
class-wise learnable focuses, which can accumulate the knowledge of previous
classes to alleviate forgetting.

– We design a focal contrastive loss to rebalance contrastive learning between
new and past classes and learn more robust representations.

– The extensive experimental results show that CVT achieves state-of-the-
art performance with even fewer parameters on online continual learning
benchmarks.

2 Related Works

2.1 Continual Learning Methods

Continual learning (CL) methods have been developed to alleviate catastrophic
forgetting in neural networks. These methods can be divided into three main
categories: expansion-based, regularization-based, and rehearsal-based methods.

As new tasks arrive, expansion-based methods dynamically expand networks
and keep sub-networks related to previous tasks fixed [69,89,1,59,86,45,82,53].
However, most expansion-based methods require task identity during inference
in order to allocate distinct sets of parameters to distinct tasks. Regularization-
based methods limit the changes in important parameters during the learning
of new tasks by estimating the importance of each network parameter for prior
tasks [12,42,2,64,43,66,93]. These works differ in how they compute the impor-
tance of network parameters.

Rehearsal-based methods [8,37,81,60,15,22,49,79,68,52] alleviate catastrophic
forgetting by replaying a subset of data of past tasks stored in limited buffer.
iCaRL [62] trains a nearest-class-mean classifier while limiting the change of
the representation in later tasks through a self-distillation loss. In addition to
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replaying past experiences, HAL [13] keeps predictions on some anchor points
by an additional objective. IExpressNet [95] introduces representative expres-
sion memory while employing a novel Center-expression-distilled loss and hav-
ing shown satisfactory performance for the task of facial expression recogni-
tion. DER++ [9] combines rehearsal with distillation loss [36,83,47] to retrain
past experience and obtain state-of-the-art performance. RM [6] proposes an
uncertainty-based sampling approach by using uncertainty and data augmenta-
tion to improve rehearsal. The proposed method in this paper belongs to the
rehearsal-based method.

2.2 Online Continual Learning

Online continual learning (online CL) is a more realistic [50,78,87,96,67,49] and
difficult setup [34], where the model learns from a non-i.i.d data stream online,
without the help of task identifiers or task boundaries both at training and
inference stages. Online CL methods are mainly based on rehearsal.

Experience Replay (ER) [63] employs reservoir sampling for memory man-
agement and jointly optimizes a network by mixing memory data with online
stream data. ERT [10] improves ER by balanced sampling and bias control.
AGEM [14] and GEM [49] use episodic memory to compute past task gradients
to constrain the online update step. GSS [4] presents a gradient-based sampling
to store diversified data for learning more information. ASER [67] is based on
the Shapley Value theory to improve the memory buffer update and sampling.
CLS [5] uses two extra models to maintain long-term and short-term semantic
memories for knowledge consolidation. SCR [52] uses supervised contrastive loss
for representation learning and employs the nearest class mean to classify.

2.3 Vision Transformers

Transformer model is firstly applied into machine translation tasks [74], and then,
Transformers have become the state-of-the-art models for most natural language
processing tasks [20,58,24,51,25]. Attention modules are the core components
of transformers, which aggregate information from the entire input sequence.
Recently, Vision Transformer (ViT) [21] is proposed to makes Transformer ar-
chitecture scalable for image classification when the data is large enough. Since
then, a lot of effort has been dedicated to improving Vision Transformers’ data
efficiency and model efficiency [92,32,91,40], where an effective direction is to
strategically integrate properties of convolution into the Transformer architec-
ture [73,91,48,84,26,94,23,17]. CoAT [88] proposes a conv-attention module that
realizes relative position embeddings with convolutions. LeViT [26] builds pyra-
mid attention structure with pooling to learn convolutional-like features. By
leveraging sequence pooling and convolutions, CCT [33] eliminates the need for
class tokens and positional embeddings.

Nevertheless, current vision transformers may not be applicable to modeling
the online data stream, and existing continual learning algorithms developed for
CNNs may not be ideal for vision transformers as well. To this end, we propose



Online Continual Learning with Contrastive Vision Transformer 5

a lightweight Contrastive Vision Transformer (CVT) with a focal contrastive
loss for online continual learning and achieve better performance than other
transformers and CNN baselines.

3 Preliminary

Problem Setup. Formally, an online continual learning problem is split in a
sequence of T supervised learning tasks Tt, t ∈ {1, ..., T}, where T is the total
number of tasks. Let D = {D1, ...,DT } be the corresponding online data stream,
where Dt is the dataset of task Tt. For task Tt, input samples x ∈ Xt and the
corresponding ground truth labels y ∈ Yt are drawn from the i.i.d. distribution
Dt. A mini-batch of training data B from D comes gradually in an online stream
(each sample is seen only once). Besides, a limited memory buffer M saves a
small set of training data of seen tasks. The model is trained on B ∪M at each
iteration. At task Tt, The label space of the model is all observed classes ∪t

i=1Yi,
and the model is expected to predict well on all classes at the inference stage.

Supervised Contrastive Learning (SCL). SCL [41,28,16] aims to push
the representation of samples with different classes farther apart while tightly
clustering representation of samples with the same class. Suppose that the clas-
sification model can be decomposed into two components: an encoder f and
a classifier w. Encoder f maps an image sample x to a vectorial embedding
(representation) z = f(x). Classifier w maps the representation z to a classi-
fication vector ŷ = w(z). Without training w, SCL focuses on training f as
follows: given a batch of b samples B = {(xk, yk)}bk=1, SCL first generates an

augmented batch B̃ = {(x̃k, ỹk)}2bk=1 by making two random augmentations of
B, with yk = ỹ2k−1 = ỹ2k. The SCL loss takes the following form:

LSCL =
∑
i∈I

−1

|P(i)|
∑

zp∈P(i)

log
exp (zi · zp/τ)∑

zj∈A(i) exp (zi · zj/τ)
, (1)

where I represents the set of indices of B̃;A(i) ≡ {zi : i ∈ I\{i}} is the set of rep-
resentations of samples in B̃ except for that of xi; P(i) :≡ {zp ∈ A(i) : ỹp = ỹi}
is the set of representations of positive samples (i.e., samples with the same la-
bels) with respect to the anchor x̃i; τ ∈ R+ is a temperature hyperparameter;
|P(i)| is its cardinality.

Although SCL could learn the transferable representation to help prevent
forgetting in online CL, SCL will face new challenges: 1) previous task data is
unavailable or very limited due to the streaming fashion, which causes severe
imbalanced contrast between past and new classes; 2) the contrastively learned
knowledge may suffer from forgetting since the distribution of the data stream
is continually changing. For visualization clarity we use a 2D feature space. As
illustrated in Fig. 2(a1) and Fig. 2(a2), the imbalanced data stream in online CL
makes the representation of previous tasks drift and difficult to be accurately
clustered by SCL.
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(a1) Supervised contrastive
learning loss for first task

(a2) Supervised contrastive
learning loss for continual tasks

(b2) Our proposed focal
contrastive loss for continual tasks

First task data Second task data Learnable focus

(b1) Our proposed focal
contrastive loss for first task

Fig. 2. Continually arriving samples are clustered on the hypersphere by contrastive
learning (for visualization clarity, we use a 2D representation space). Different colors
represent different classes. Supervised contrastive learning loss on online stream data
fails to obtain good inter-class distinction and intra-class aggregation caused by the
class imbalance. Focal contrastive loss effectively mitigates class imbalance in online
CL and accumulates class-wise knowledge by the learnable focuses.

4 Methodology

To alleviate the forgetting problem in online continue learning, we propose a
framework Contrastive Vision Transformer (CVT), which designs a new focal
contrastive learning strategy based on the transformer architecture. An overview
of the framework is depicted in Fig. 1. CVT plays the strengths of the attention
mechanism in online CL, which design an effective transformer architecture with
external attention. We tackle the imbalance issue of SCL in online CL by propos-
ing a focal contrastive loss at the attention level. The learnable focuses in CVT
can accumulate class-specific knowledge to alleviate the forgetting of previous
tasks. Besides, a dual-classifier is used to decouple learning current classes and
balancing all seen classes, improving the stability-plasticity trade-off.

In the following, we will go through the description of CVT in terms of both
model architecture (Sec. 4.1) and focal contrastive continual learning strategy
(Sec. 4.2), respectively.

4.1 Model Architecture

Fig. 3 illustrates the CVT architecture. The major contributing components in
the architecture include 1) external attention, which implicitly captures previ-
ous tasks’ information and reduces the number of parameters, and 2) learnable
focuses, which could maintain and accumulate the knowledge of previous classes.

External Attention. CVT plays the strengths of the attention mechanism in
online CL. Unlike the vanilla self-attention in vision transformers [21,26] that
derives the attention map by computing similarity between self-queries and self-
keys [74], we introduce an external attention mechanism [79] to obtain the at-
tention map by computing the affinities between self-queries and a learnable
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Fig. 3. The architecture of Contrastive Vision Transformer (CVT). CVT architecture
is composed of stacked transformer blocks after a simple convolutional block. Shrink
module performs downsampling to reduce the resolution of the activation maps and
increase their number of channels between CVT stages. Focuses are a set of learnable
attention vectors. After a projection layer, two classifiers serve for knowledge injection
and accumulation, respectively.

external key KW with an attention bias B, which implicitly injects previous
task information in the attention mechanism. Moreover, the proposed architec-
ture can save the number of parameters compared to self-attention.

Let the input tensor be X, we apply linear transformation with weights
Wq and Wv to get the vanilla self-query QX=WqX and self-value VX=WvX,
respectively. We employ a linear layer KW to replace the input-depended self-
key, and explicitly add a learnable attention bias B to attention maps. Consider
H attention heads, which are uniformly split into H segments Qh

X ,Kh
W , V h

X , and
Bh. The external attention mechanism computes the head-specific attention map
Ah and concatenates the multi-head attention as follows:

Ah=Softmax

(
Norm(Qh

X(Kh
W )⊤)+Bh√

d/H

)
, Xh

out = AhV h
X , h = 1, ...,H, (2)

where Norm() denotes batch normalization; d is the dimension of the key.

Learnable Focuses. CVT contains learnable focuses for each class, which could
maintain and accumulate the knowledge of previous classes to alleviate forgetting
for online CL. The class-wise learnable focuses O = {o1,o2, ...,oC} is a set of
learnable attention vectors, as shown in Fig. 3, where a focus oc corresponds to
class c, and C is the number of the seen classes. The size of the learnable focuses
is negligible in relation to the overall model.

When a new class c appears in the data stream, the corresponding focus oc

to class c starts to participate in the training (refer to Eq. (3)). Even if class c no
longer appears in the data stream afterward, the focus oc always participates in
the online CL training and serves as a negative sample for the other classes, as
illustrated in Fig. 2(b1) and Fig. 2(b2). Thus, focuses O preserve and accumulate
the previously learned class-specific knowledge and acts as a forgetting mitigation
in online continual learning.
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4.2 Focal Contrastive Continual Learning

We propose a rehearsal-based focal contrastive learning scheme to 1) tackle the
imbalance issue of SCL in online CL and 2) accumulate class-specific knowledge,
to alleviate the interference with previous tasks. The learning scheme includes
two losses: a focal contrastive loss and a dual-classifier loss, as following.

Focal Contrastive Loss. For learning representation continually, we propose
a focal contrastive loss LFC in online CL. As mentioned in Sec. 3, during the
training phase, the model observes a mini-batch B at a time sampled from task
Tt in the data stream D. An input batch for the model is composed of B and
BM sampled from the memory buffer M. The input batch and its augmented
view are encoded by CVT blocks to generate attention z, as shown in Fig. 3. As
mentioned previously, a set of class-wise learnable focuses O = {o1,o2, ...,oC}
is utilized by focal contrastive loss LFC, where a focus oc is a learnable attention
vector for class c and C is the number of the seen classes. The FC loss function
is defined as:

LFC =
∑
i∈I

−1

|P(i) ∪ oỹi
|

∑
zp∈P(i)∪oỹi

δzp
log

exp (zi · zp/τ)∑
j∈A(i)∪O exp (zi · zj/τ)

, (3)

where

δzp
=

{
µ, zp ∈ O
1.0, zp ∈ P(i)

, (4)

and µ is the weight of focuses. We set µ > 1 to make focuses play a more im-
portant role in contrastive learning; P(i) and A(i) are the same with supervised
contrastive learning in Eq. (1); τ ∈ R+ is a temperature hyperparameter.

The benefits of using focal contrastive loss are two-fold. First, it alleviates the
imbalance issue in online CL by employing the class-wise focuses. Second, it ac-
cumulates the previous knowledge by the learnable focuses which will continually
serve as the prototypes of classes to maintain class-specific information. With
a proposed focal contrastive loss LFC in training, CVT rebalances contrastive
learning between new and past classes and improve the inter-class distinction
and intra-class aggregation, as illustrated in Fig. 2. In Sec. 5.3, we empirically
observe that LFC outperforms the original LSCL and boost the online CL.

Dual-classifier Loss. We propose a dual-classifier structure to decouple learn-
ing current classes and balancing all seen classes, which contains an injection
classifier to inject new task representation into the model, alleviating interfer-
ence to previously learned knowledge, and an accumulation classifier to integrate
past and new knowledge in a balanced manner.
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Let g(x) be the representation of a sample x outputted from the Projection
of CVT before the classifier. When new data stream batch arrives, we utilize the
output from an independent injection classifier to compute a classification loss:

LI =
∑

(x,y)∈B

ℓ(y, fI(g(x))), (5)

where fI denotes the injection classifier and ℓ adopts a cross-entropy loss. fI is
only trained on stream data and does not participate in the inference stage.

Besides, we employ an accumulation classifier to focus on improving the
stability-plasticity trade-off by integrating previous and new knowledge in a bal-
anced manner. The accumulation classifier is used at the inference stage for
outputting the prediction. Rehearsing the limited memory data during learning
new tasks is a crucial way to maintain previous knowledge. We can replay the
exemplars stored in the memory buffer with their ground truth labels. In addi-
tion, the accumulation classifier also needs a supervised signal from current task
data. Therefore, we give the accumulation classifier loss:

LA = αE(x′,y′)∼M
[
ℓ(y′, fA(g(x

′)))
]
+ β

∑
(x,y)∈B

ℓ(y, fA(g(x))), (6)

where fA denotes the accumulation classifier; α and β are the coefficients bal-
ancing knowledge consolidation. We approximate the expectation by computing
gradients on batches sampled from the memory buffer.

Overall, the total loss used in CVT is the sum of Eq. (3), Eq. (5), and Eq. (6):

L = LA + LI + γLFC, (7)

where γ is the coefficient balancing LFC. After updating the whole CVT model
on a mini-batch B, the memory buffer M will be updated with B by Reservoir
sampling [77,9].

5 Experiment

5.1 Experimental Setup and Implementation

We consider a strict evaluation setting [38,75] for online continual learning, in-
cluding task-aware protocol [56] and task-free protocol [39]. For task-aware pro-
tocol [56], the task identities are required for each time evaluation. For task-free
protocol [39], the task identities are unavailable at inference time.
Datasets. Online continual learning benchmarks evaluate the capacity of an al-
gorithm to learn on not independent and identically distributed (non-iid) data.
CIFAR-100 [44] contains 100 classes and each class has 100 testing and 500 train-
ing color images. TinyImageNet [70] consists 200 classes that include 100,000
images for training and 10,000 images for testing. ImageNet100 [62] contains
100 classes randomly chosen from ILSVRC [19], including about 120,000 images
for training and 5,000 images for validation.
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Memory
Buffer

Method #Paras
10 splits 20 splits

Task-free Task-aware Task-free Task-aware

– SGD 11.2 5.77±0.35 37.44±1.83 3.53±0.12 36.81±2.63

500

ER [63] 11.2 15.59±1.20 59.72±0.83 12.51±0.77 62.72±1.70

GEM [49] 11.2 14.34±1.63 50.39±0.28 5.98±0.33 57.15±1.77

AGEM [14] 11.2 6.35±0.13 39.18±0.27 3.62±0.08 39.55±0.17

iCaRL [62] 11.2 15.18±0.31 48.95±0.33 12.79±0.26 60.53±0.38

FDR [8] 11.2 5.97±0.20 32.18±1.60 3.60±0.07 39.98±1.32

GSS [4] 11.2 10.91±0.36 59.10±0.26 6.33±0.30 62.80±2.31

DER++ [9] 11.2 15.72±1.29 54.45±1.59 11.29±0.25 63.62±1.05

HAL [13] 22.4 10.51±0.63 33.70±1.37 7.09±0.39 52.89±2.36

ERT [10] 11.2 16.28±0.73 60.11±2.18 17.92±0.42 68.08±0.37

ASERµ [67] 11.2 12.42±0.68 53.77±1.30 9.63±0.51 58.91±1.62

RM [6] 11.2 14.32±0.49 58.76±1.82 13.73±0.60 64.73±2.01

CLS [5] 33.8 15.06±0.57 59.82±1.24 14.84±0.83 65.74±1.94

CVT (ours) 8.9 24.45±0.62 62.52±1.43 21.81±0.52 71.23±1.40

1000

ER [63] 11.2 20.41±1.46 63.39±1.37 17.02±1.63 68.52±1.09

GEM [49] 11.2 16.49±1.08 52.30±0.51 8.40±1.05 62.59±1.89

AGEM [14] 11.2 6.57±0.12 40.38±0.30 3.74±0.05 42.39±0.42

iCaRL [62] 11.2 16.31±0.26 50.49±0.18 13.03±0.26 61.13±0.20

FDR [8] 11.2 6.58±0.31 36.99±0.45 3.72±0.04 42.45±0.39

GSS [4] 11.2 12.38±0.59 60.75±0.28 7.40±0.23 66.06±1.25

DER++ [9] 11.2 21.27±1.69 61.80±1.24 13.42±0.50 71.26±0.61

HAL [13] 22.4 11.81±0.79 39.67±2.63 13.14±0.72 60.03±1.20

ERT [10] 11.2 23.43±0.58 62.25±1.33 24.58±0.36 72.61±0.67

ASERµ [67] 11.2 14.38±0.43 58.91±1.76 12.79±0.60 62.47±1.82

RM [6] 11.2 22.41±1.28 61.82±2.13 18.91±1.15 67.30±1.34

CLS [5] 33.8 19.73±1.17 62.54±1.52 17.06±1.47 70.08±0.85

CVT (ours) 8.9 28.83±0.86 65.86±1.24 28.15±0.51 75.76±0.93

Table 1. Results (overall accuracy %) on CIFAR100 benchmark which is averaged
over five runs. #Paras means the number of parameters in the model, which is counted
by million.

Baselines. We compare CVT with state-of-the-art and well-established On-
line CL baselines, including 11 rehearsal-based methods (ER [63], GEM [49],
AGEM [14], GSS [4], FDR [8], HAL [13], ASERµ [67], ERT [10], RM [6], SCR [52],
and CLS [5]), 2 methods leveraging Knowledge Distillation (iCaRL [62] and
DER++ [9]). Besides, we also compare vision transformers (ViT [21], LeViT [26],
CoAT [88], and CCT [33]) with rehearsal strategy for continual learning. We also
provide the results of simply performing SGD without any countermeasure to
alleviate forgetting.

Metrics. We evaluate online CL methods in terms of accuracy and forgetting
following [12,14,9]. The accuracy is defined by AT=

1
T

∑T
t=1 aT,t, and the forget-

ting is defined by FT=
1

T−1

∑T−1
t=1 maxi∈{1,...,T−1} (ai,t − aT,t), where aT,t is the

inference accuracy on task Tt when the model finished learning task TT .



Online Continual Learning with Contrastive Vision Transformer 11

Memory
Buffer

Method #Paras
TinyImageNet

#Paras
ImageNet100

Task-free Task-aware Task-free Task-aware

– SGD 11.2 4.54±0.03 26.25±0.16 11.2 3.98±0.02 19.05±0.17

500

ER [63] 11.2 9.71±0.18 42.76±0.35 11.2 9.88±0.46 32.38±0.63

AGEM [14] 11.2 4.63±0.08 27.86±0.13 11.2 3.38±0.08 21.80±0.15

iCaRL [62] 11.2 6.17±1.03 27.22±1.52 11.2 7.70±0.32 20.45±0.80

FDR [8] 11.2 5.19±0.18 28.23±0.46 11.2 3.34±0.16 19.24±0.07

DER++ [9] 11.2 9.56±0.69 40.52±0.47 11.2 10.30±0.24 29.20±0.38

ERT [10] 11.2 9.95±0.72 40.42±1.57 11.2 10.28±0.25 28.53±0.48

ASERµ [67] 11.2 9.22±0.25 41.09±0.68 11.2 9.75±0.57 31.71±0.79

RM [6] 11.2 8.39±1.37 41.63±0.74 11.2 8.53±0.68 28.30±0.52

SCR [52] 11.2 9.08±0.74 39.85±0.93 11.2 8.81±0.79 29.62±1.24

CVT (ours) 9.0 14.71±1.04 43.93±1.42 9.4 14.82±0.31 36.74±0.46

1000

ER [63] 11.2 12.46±0.45 45.50±0.61 11.2 10.42±0.51 34.26±0.43

AGEM [14] 11.2 4.92±0.13 28.38±0.15 11.2 3.66±0.05 23.56±0.19

iCaRL [62] 11.2 6.91±0.52 28.56±0.37 11.2 8.93±0.48 22.37±1.04

FDR [8] 11.2 5.27±0.12 28.94±0.36 11.2 3.58±0.09 21.28±0.11

DER++ [9] 11.2 12.97±0.42 47.21±0.33 11.2 13.94±0.71 40.02±0.39

ERT [10] 11.2 13.84±0.77 44.65±0.79 11.2 12.26±0.23 33.88±0.60

ASERµ [67] 11.2 12.26±0.38 46.02±0.82 11.2 11.38±0.54 35.76±1.28

RM [6] 11.2 11.73±0.89 45.89±0.64 11.2 11.85±1.17 32.72±0.85

SCR [52] 11.2 10.19±1.14 43.58±1.20 11.2 10.74±0.85 31.84±2.27

CVT (ours) 9.0 16.54±1.22 48.50±0.88 9.4 18.02±0.25 42.61±0.72

Table 2. Results (overall accuracy %) on TinyImageNet and ImageNet100, which are
averaged over three runs. #Paras means the number of parameters in the model, which
is counted by million.

Implementation Details. In order to compare each method fairly, we train
all networks using stochastic gradient descent (SGD) optimizer. The images
used for training are randomly cropped and flipped for each method follow-
ing [9,10,68]. We adopt 1 epoch with mini-batch size of 10 for all datasets,
following [62,9,10,93]. Online continual learning baselines use ResNet18 [35] as
backbone and cross-entropy as the classification loss, following [14,68,6,9,13,71].
The implementation of transformer block is based on LeViT [26] and ViT [21].
CVT framework employs GELU activation and dropout in transformer blocks
and uses a global average pooling to the last activation map.

5.2 Comparison to State-of-the-Art Methods

Evaluation on CIFAR100. Following the setting proposed in [62,89], we trains
all 100 classes in several splits, including 10, 20 incremental tasks. Table 1 sum-
marizes the overall accuracy on CIFAR100 with 500 and 1000 memory sizes. It
is demonstrated that CVT outperforms other baselines by a considerable margin
in different incremental splits, e.g., CVT can improve the accuracy of continual
learning by more than 8% in 10-split with 500 memory capacity. Especially in
the case of small memory, the advantage of CVT is more obvious, which indi-
cates CVT can effectively alleviate the imbalance issue in online CL. It is worth
noting that although CVT uses fewer parameters (8.9M) than other methods
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Fig. 4. Forgetting results (%) on CIFAR100 (lower is better).

(11.2M∼33.8M), it can still achieve superior performance. One reason is that
CVT inherits the merits of transformers for modeling the stream of tasks with-
out stacking a lot of parameters, and besides, the number of parameters for the
proposed learnable focuses is extremely small.
Evaluation on ImageNet datasets. Table 2 summarizes the evaluation re-
sults for the TinyImageNet and ImageNet100 datasets with 10 splits. It is demon-
strated that CVT consistently surpasses other methods with a considerable mar-
gin for Task-free and Task-aware on TinyImageNet and ImageNet100 datasets.
Specifically, our method outperforms the state-of-the-art with about 4.3% for
the Task-aware accuracy on the ImageNet100 benchmark. For TinyImageNet
benchmark, the Task-free accuracy is improved from 9.95% to 14.71%(+4.76%).
Moreover, CVT takes fewer parameters compared to other CNN-based methods.
Forgetting. To compare the alleviating forgetting capability, we assess the av-
erage forgetting [9,12] that measures the performance degradation in subsequent
tasks. As shown in Fig. 4, CVT suffers from less forgetting than all the other
baselines in both of Task-free and Task-aware settings with memory buffer 1000
on CIFAR100. This is because CVT utilizes the focal contrastive loss and dual-
classifier loss, which improve the stability of the vision transformer network.
Incremental Performance. We also evaluate the average incremental perfor-
mance [62,9] under the Task-free protocol with 500 memory buffer, which is
the result of evaluating on all the tasks observed so far after completing each
task. As illustrated in Fig. 5, the results are curves of accuracy and forgetting
after each task. It is observed that during the learning process, most methods
degrade rapidly as new tasks arrive, while our method consistently outperforms
the state-of-the-art methods in both accuracy and forgetting.

5.3 Ablation Study and Analysis

Comparison to Transformer and CNN Backbone. We compare CVT to
Vision Transformer networks (ViT [21], LeViT [26], CoAT [88], and CCT [33])
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Fig. 5. Incremental performance evaluated on tasks observed so far. [↑] higher is better,
[↓] lower is better (best seen in color).

and the CNN benchmark ResNet18 [35] under the proposed rehearsal strategy
in online continual learning. Table 3 demonstrates the results of accuracy and
forgetting on CIFAR100 and TinyImageNet with 500 memory. It is observed that
ViT is not up to the task of online continual learning, since it is “data-hungry”
and only fits i.i.d. large datasets. Besides, LeViT, CoAT, and CCT contain CNN
structures to obtain inductive biases, which still suffer from catastrophic forget-
ting in online CL. We can find that using Vision Transformer directly for online
CL can not consistently outperform CNN-based networks. Our proposed CVT
architecture essentially inherits the merits of CNN and transformers and thus
works well in online streaming data and modeling long-dependencies in the input
data. Moreover, CVT even takes fewer parameters to achieve better performance
for online CL, which also benefits from the focal contrastive loss and the dual-
classifier structure.

Effect of Each Component. To assess the effects of the components in CVT,
we perform ablation study in terms of accuracy and forgetting. From Table 3
we can observe that the proposed focal contrastive loss LFC plays an important
role in alleviating catastrophic forgetting and accumulating knowledge. However,
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Method #Paras
CIFAR100

#Paras
TinyImageNet

Accuracy[↑] Forgetting[↓] Accuracy[↑] Forgetting[↓]

ViT [21] 16.2 8.48 35.56 16.3 7.91 42.26
LeViT [26] 10.9 14.55 44.53 12.1 9.02 41.41
CoAT [88] 10.3 13.17 47.64 11.3 8.78 39.80
CCT [33] 4.3 13.86 51.06 4.4 9.97 40.21

ResNet18 [35] 11.2 15.72 43.82 11.2 9.56 42.13
ResNet18 + LFC 11.3 17.49 38.73 11.3 10.17 36.49
ResNet18 + dual-classifier 11.2 18.84 35.38 11.2 10.91 33.55

CVT - LFC 8.8 19.92 26.16 8.9 12.47 19.43
CVT - LFC + LSCL 8.9 20.73 25.52 9.0 12.59 20.47
CVT - dual-classifier 8.9 22.08 29.81 9.0 13.63 18.95
CVT (ours) 8.9 24.45 21.86 9.0 14.71 16.32

Table 3. Ablation study on backbone and each component of CVT. “-” indicates the
removal operation. “+” represents an add component operation.

if we simply use supervised contrastive learning loss LSCL to replace LFC, we
find that the forgetting problem is not mitigated compared to not using any
contrastive loss. This is because using LSCL directly could cause a severe im-
balance between new and past classes in online CL, which limits the learning
of transferable representation. While LFC can overcome the issue by utilizing
the learnable focuses to boost the performance of online CL. This supports that
LFC can rebalance contrastive learning between new and past classes
and improve the inter-class distinction and intra-class aggregation. Be-
sides, we can see the dual-classifier loss obtains 2.37% and 7.97% gain in terms
of accuracy and forgetting on CIFAR100, respectively. The results of Table 3
demonstrate the effectiveness of each component of CVT.

6 Conclusion

In this paper, we propose a novel attention-based framework, Contrastive Vision
Transformer (CVT), to effectively mitigate the catastrophic forgetting for online
CL. To the best of our knowledge, this paper is the first in the literature to design
a Transformer for online CL. CVT contains external attention and learnable fo-
cuses to accumulate previous knowledge and maintain class-specific information.
With a proposed focal contrastive loss in training, CVT rebalances contrastive
continual learning between new and past classes and improves the inter-class
distinction and intra-class aggregation. Moreover, CVT designs a dual-classifier
structure to decouple learning current classes and balancing all seen classes. Ex-
tensive experimental results show that our approach significantly outperforms
current state-of-the-art methods with fewer parameters. Ablation study validates
the effectiveness of each proposed component.
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