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A Implementation Details

Implementation of AMixer. We provide the pseudo code of Adaptive Weight
Mixing in Algorithm 1. We apply the adaptive weight mixing to Swin Transform-
ers [11] to construct our hierarchical models including AMixer-T, AMixer-S, and
AMixer-B. The detailed configurations of our architecture variants can be found
in Table 1.

Image classification. We train all our image classification models for 300
epochs using the AdamW optimizer [12] on ImageNet [4]. We set the initial
learning rate as 0.001 and decay the learning rate to 1e−5 using the cosine learn-
ing rate scheduler. We set the batch size to 1024 for all models. We use a linear
warm-up learning rate in the first 5 epochs following DeiT [18] and Swin [11]. For
ViT-style models, we follow the regularization strategies suggested by [18], where
Mixup [22] (0.8), CutMix [21] (1.0), random erasing [23] (0.25), label smoothing
(0.1), RandAugment [3] (9, 0.5), repeated augmentation [6] and EMA model [14]
are used during training. For hierarchical models, we do not use repeated aug-
mentation and EMA model following the original implementation of Swin. We
use the absolute positional embeddings for ViT-style models and do not add
absolute/relative positional embeddings for Swin-based models. We remove the
class token for all our models and use the global average pooling over all tokens
to obtain the global representation of the input as in Swin. We set the stochas-
tic depth coefficient [7] to 0.1, 0.2, 0.35 and 0.5 for AMixer-DeiT-S, AMixer-T,
AMixer-S and AMixer-B, respectively. We insert the LayerScale operation [19]
to the end of each block before the residual connection to ease the training of
deeper models. Note that we do not add any extra convolutional layers to our
models to fairly compare with DeiT and Swin, and do not use the extra regu-
larization tricks like knowledge distillation [18] and token labeling [8] although
it is useful to further improve the performance of our models.

Transfer learning. We evaluate generality of AMixer and the learned represen-
tation on several commonly used transfer learning benchmark datasets including
CIFAR-10 [10], CIFAR-100 [10], Stanford Cars [9] and Flowers-102 [13]. We fol-
low the setting of previous works [15, 5, 18, 17], where the model is initialized by
the ImageNet pre-trained weights and finetuned on the new datasets. During
finetuning, we use the AdamW [12] optimizer and set the weight decay to 1e−4.
We use batch size 512 and a smaller initial learning rate of 0.0001 with cosine
decay. We set the warm-up epoch to 5 and maximal norm for gradient clipping to
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Algorithm 1 Pseudocode of Adaptive Weight Mixing.

class AdaptiveWeightMixing(nn.Module):
def __init__(self, dim, h, w, n_heads, n_bank):

self.weight_bank = nn.Parameter(torch.randn(n_bank, (2 * h - 1) * (2 * w - 1)))
self.v_proj = nn.Linear(dim, dim)
self.c_proj = nn.Linear(dim, dim)

self.adapter = nn.Sequential(
nn.Linear(dim, dim // 4),
nn.GELU(),
nn.Linear(dim // 4, n_bank * n_heads)

)

def forward(self, x):
B, N, C = x.shape
# weight generation
mix_policy = self.adapter(x).view(B, N, n_bank, n_heads)
weight_bank = self.weight_bank[:, self.rel_idx]
weight = einsum(’bnkh,knm->bnmh’, mix_policy, weight_bank)
weight = softmax(weight, dim=1)

# spatial mixing
x = self.v_proj(x.view(B, N, n_heads, -1))
x = einsum(’bnhc,bnmh->bmhc’, x, weight)
x = self.c_proj(x.view(B, N, C))
return x

Table 1: Detailed configurations of different variants of AMixer. Our models is built
based on the Swin Transformers [11] architecture. We provide the number of blocks,
channels, and heads in each stage. The FLOPs are calculated with 224× 224 input.

Model #Blocks #Channels #Heads #Weight Bank Params FLOPs

AMixer-T [2, 2, 9, 2] [96, 192, 384, 768] [6, 12, 24, 48] [9, 18, 36, 72] 26M 4.5G
AMixer-S [2, 2, 24, 2] [96, 192, 384, 768] [6, 12, 24, 48] [9, 18, 36, 72] 46M 9.0G
AMixer-B [2, 2, 24, 2] [128, 256, 512, 1024] [8, 16, 32, 64] [12, 24, 64, 96] 83M 16.0G

1 to stabilize the training and preserve the knowledge learned from pre-training.
We keep the regularization methods used in ImageNet pre-training unchanged.
For CIFAR-10 and CIFAR-100 with relatively more samples, we train the model
for 200 epochs. For other datasets, the model is trained for 1000 epoch. Our
models are trained and evaluated on commonly used splits following [15].

Semantic segmentation. We conduct the semantic segmentation experiments
using MMSegmentation toolbox [2]. We follow the experiment settings in PVT [20]
and Twins [1]. We train our model for 80K steps with a batch size of 16 where we
use 8 GPUs with 2 images on each GPU. We set the stochastic depth coefficient
to 0.2 and 0.3 for AMixer-T and AMixer-S respectively.

B More Analysis and Visualization

Effects of the choice of activation function. Compared to previous all-
MLP models like MLP-Mixer [16] and ResMLP [17], one key difference of our
framework is the self-attention style activation function. Therefore, we thor-
oughly study the effects of different activation functions in Table 2. Although
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Table 2: Effects of the choice of activation function. We investigate the
effects of different activation functions to normalize the spatial mixing weights
based on our ViT-style AMixer model.

Identity Softmax ℓ2-Normalize Sigmoid LayerNorm
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Fig. 1: The distributions of mean attention distances in different layers.
We measure the distribution of the mean attention distances of our ViT-style
AMixer model. The dots show the mean attention distances of each head.

using Softmax can achieve slightly better performance compared to no activation
function, the role of activation function is much less critical in our framework.

Attention distance. We measure the distribution of the mean attention dis-
tances in different layers of our ViT-style AMixer model in Figure 1. The mean
attention distance is defined by dmean = 1

HW

∑
i

∑
j Mi,jdℓ2(i, j). We see the

mean attention distances gradually increase when the model becomes deeper.
Our model has diverse attention patterns in different layers.

More Visualization. To have an intuitive understanding of our model, we
visualize the weight bank in different layers in Figure 2, where the weights are
stored based on our relative attention weight format. We show the first 6 weights
of the weight bank from shallow, medium and deep layers as well as the average
of all weights in the layer. We see the shallow layers usually focus on the local
information while the deeper layers capture more long-range dependencies. It is
interesting that although we do not impose any symmetric regularization on the
weight bank, the learned weights are usually symmetric.
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Fig. 2: Visualization of the weight bank in different layers. We visualize
the weight bank in different layers, where the weights are stored based on our
relative attention weight format. We see the shallow layers usually focus on the
local information while the deeper layers capture more long-range dependencies.
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