
Equivariant Hypergraph Neural Networks 1

A Appendix

A.1 Proofs

For the proof of Proposition 1 and Theorem 1 (Section 3.2), it is convenient that
we first derive maximally expressive equivariant linear layers for symmetric input
and output tensors. This is because all tensors under consideration in this work
are symmetric due to the unorderedness of hypergraphs (see Definition 2).

Let us remind the maximally expressive equivariant linear layers characterized

in Maron et. al. [43] (Section 2). Given an order-k input tensor A ∈ Rnk×d, the
order-l output tensor of an equivariant linear layer Lk→l is written as follows,
with indicator 1 and multi-indices i ∈ [n]k, j ∈ [n]l:

Lk→l(A)j =
∑
µ

∑
i

1(i,j)∈µAiwµ +
∑
λ

1j∈λbλ. (13)

where wµ ∈ Rd×d′
, bλ ∈ Rd′

are weight and biases, and µ and λ are equivalence
classes of order-(k+l) and order-l multi-indices, respectively. As briefly introduced
in Section 2, the equivalence classes specify a partitioning of a multi-index space;
the equivalence classes µ partition the space of order-(k + l) multi-indices [n]k+l,
and λ partition the space of order-l multi-indices [n]l. To be more specific,
the equivalence classes are defined upon equivalence relation ∼ of multi-indices
that specifies the partitioning [n]k/∼ of multi-index space [n]k. The equivalence
relation ∼ is defined as follows: for i, j ∈ [n]k, the equivalence relation sets i ∼ j
if and only if (i1, ..., ik) = (π(j1), ..., π(jk)) for some node permutation π ∈ Sn.

In the following Lemma, we show that if input and output of Lk→l (Eq. (13))
are constrained to be symmetric, the layer is described with coarser partitioning
of index spaces (in terms of partition refinement) specified by equivalence relations
that are invariant to axis permutation on top of node permutation:

Lemma 1. If input and output of an equivariant linear layer Lk→l (Eq. (1)) are
constrained to be symmetric tensors, it can be reduced to the following L[k]→[l]:

L[k]→[l](A)j =
∑
α

∑
i

1(i,j)∈αAiwα +
∑
β

1j∈βbβ , (14)

where α and β are equivalence classes that specify the partitioning [n]k+l/∼α and
[n]l/∼β

respectively, defined as the following:

1. The equivalence classes α are defined upon the equivalence relation ∼α that,
for i, j ∈ [n]k+l, relates i ∼α j if and only if the following holds for some node
permutation π ∈ Sn and axis permutations πk ∈ Sk, πl ∈ Sl:

(i1, ..., ik+l) =
(
π(jπk(1)), ..., π(jπk(k)), π(jk+πl(1)), ..., π(jk+πl(l))

)
. (15)

2. The equivalence classes β are defined upon the equivalence relation ∼β that,
for i, j ∈ [n]l, relates i ∼β j if and only if the following holds for some node
permutation π ∈ Sn and axis permutation πl ∈ Sl:

(i1, ..., il) =
(
π(jπl(1)), ..., π(jπl(l))

)
. (16)

2 J. Kim et al.

Proof. We begin from Lk→l (Eq. (13)) and reduce its parameters without affecting
the output based on symmetry of input and output. For πk ∈ Sk, we denote
axis permutation of a multi-index i ∈ [n]k as πk(i1, ..., ik) = (iπk(1), ..., iπk(k)) and

denote axis permutation of a tensor A ∈ Rnk×d as (πk ·A)i = Aπ−1
k (i). With

symmetry, input and output of Lk→l are constrained to be axis permutation
invariant, i.e., the following holds:

Lk→l(A) = πl · Lk→l(πk ·A), (17)

for all πk ∈ Sk, πl ∈ Sl, and symmetric A ∈ Rnk×d. In other words:

Lk→l(A)j =
∑
µ

∑
i

1(i,π−1
l (j))∈µAπ−1

k (i)wµ +
∑
λ

1π−1
l (j)∈λbλ, (18)

which, denoting π−1
l as πl and noting πk is a bijection on [n]k, leads to following:

Lk→l(A)j =
∑
µ

∑
i

1(πk(i),πl(j))∈µAiwµ +
∑
λ

1πl(j)∈λbλ. (19)

We now reduce biases. From Eq. (19), we see that by constraining the output
to be symmetric,

∑
λ 1j∈λbλ =

∑
λ 1πl(j)∈λbλ holds for all j ∈ [n]l and πl ∈ Sl.

We can see that this holds if and only if bλ1
= bλ2

for all (λ1, λ2) such that, for
some j ∈ λ1, πl(j) ∈ λ2 holds for some πl ∈ Sl. By writing bβ = bλ1 = bλ2 , we can
interpret β as a new equivalence class of multi-indices formed as a union of all such
{λ1, λ2, ...} (thereby specifying a coarser partitioning than ∼), or equivalently, by
collecting all multi-indices related by node and axis permutations, i.e., equivalence
relation ∼β . Thus, we can reduce biases as

∑
β 1j∈βbβ .

We now reduce weights. From Eq. (19), we see that by constraining the input
and output to be symmetric,

∑
µ

∑
i 1(i,j)∈µAiwµ =

∑
µ

∑
i 1(πk(i),πl(j))∈µAiwµ

holds for all i ∈ [n]k, j ∈ [n]l, πk ∈ Sk, πl ∈ Sl, and symmetricA ∈ Rnk×d. Similar
to biases, this holds if and only if wµ1

= wµ2
for all (µ1, µ2) such that, for some

(i, j) ∈ µ1, (i, πl(j)) ∈ µ2 holds for some πl ∈ Sl. By writing wβ = wµ1
= wµ2

,
we can interpret β as a new equivalence class of multi-indices formed as a union
of all such {µ1, µ2, ...}, or equivalently, by collecting all multi-indices related
by node and output axis permutations. On top of that, the symmetry of input
tensor gives us another room to reduce the parameters. We can see that, for
all (β1, β2) such that (πk(i), j) ∈ β2 holds for some (i, j) ∈ β1 and πk ∈ Sk, we
can replace both wβ1

and wβ2
by wα = (wβ1

+ wβ2
)/2 and obtain exactly same

output. Extending, for any collection {β1, β2, ...} of all such pairwise related β’s,
we can replace wβ1 , wβ2 , ... by wα = (wβ1 + wβ2 + ...)/|{β1, β2, ...}| and obtain
exactly same output. Thus, we can interpret α as a new equivalence class of multi-
indices formed as a union of all such {β1, β2, ...}, or equivalently, by collecting
all multi-indices related by node, input axis, and output axis permutations i.e.,
equivalence relation ∼α. Thus, we can reduce weights as

∑
α

∑
i 1(i,j)∈αAiwα.

We now prove Proposition 1 and Theorem 1 (Section 3.2).

Equivariant Hypergraph Neural Networks 3

Proof of Proposition 1 (Section 3.2) We begin from a simple lemma:

Lemma 2. For a symmetric order-k tensor A(k) that represents a k-uniform
hypergraph (Eq. (2)), all indices i of nonzero entries contain k distinct elements.

Proof. In Eq. (2), recall that A
(k)
(i1,...,ik)

≠ 0 only if {i1, ..., ik} ∈ E(k). As E(k)

is a set of k-uniform hyperedges that contain k distinct node indices, every
multi-indices (i1, ..., ik) of nonzero entries of A(k) contains k distinct elements.

Now, we prove Proposition 1.

Proof. We begin from L[k]→[l] in Eq. (14) and reduce the parameters without
affecting the output. By further constraining the (already symmetric) input and
output to symmetric tensors that represent uniform hypergraphs, we first write:

L(k)→(l)(A
(k))j = 1|j|=l

∑
α

∑
i

1(i,j)∈α1|i|=kA
(k)
i wα +

∑
β

1j∈βbβ

 . (20)

Note that two constraints are added, 1|i|=k multiplied to the input and 1|j|=l

multiplied to the output. This comes from the fact that the input/output of the
layer are order-k/l tensors that represent k/l-uniform hypergraphs, respectively.
As Lemma 2 states, the input/output must contain nonzero entry only for indices
that contain k/l distinct elements, respectively.

We first reduce biases. The constraint 1|j|=l leaves only a single bias bβl
of

equivalence class βl and discards the rest (i.e., |j| = l if and only if j ∈ βl). This
particular equivalence class βl specifies that all multi-index entries j1, ..., jl are
unique. For any other equivalence class β′ ̸= βl, the partition that represents it
ties at least two entries of j ∈ β′ (ja = jb for a ̸= b). This gives |j| < l for all
j ∈ β′, which leads to j /∈ β′ for all |j| = l. Thus we have 1|j|=l1j∈β′ = 0 for all
j, meaning bβ′ cannot affect the output in Eq. (20). We can safely remove all
β′ ̸= βl from the bias, and the layer reduces to the following where bl = bβl

:

L(k)→(l)(A
(k))j = 1|j|=l

(∑
α

∑
i

1(i,j)∈α1|i|=kA
(k)
i wα + bl

)
. (21)

We now reduce weights. Similar to bias, the joint constraint 1|j|=l1|i|=k leaves
exactly 1+min(k, l) weights and discards the rest. We derive this by removing all
equivalence classes α that never affect the output. For any equivalence class α′

that ties at least two entries within i or j for some (i, j) ∈ α′ (ia = ib or ja = jb
for a ̸= b), we have |i| < k or |j| < l for all (i, j) ∈ α′, which leads to (i, j) /∈ α′

for all |i| = k and |j| = l. Thus we have 1|j|=l1|i|=k1(i,j)∈α′ = 0 for all (i, j),
meaning wα′ cannot affect the output in Eq. (20) and can be safely removed.
We now have a reduced set of equivalence classes α such that for any (i, j) ∈ α,
|i| = k and |j| = l. Notably, due to axis permutation symmetry described in
Lemma 1, we can see that each equivalence class α can be described exactly by

4 J. Kim et al.

the number of equivalences ia = jb between i and j, which we denote as I (i.e.,
if α is described by I, |i ∩ j| = I if and only if (i, j) ∈ α). Thus, by discarding
irrelevant equivalence classes and rewriting in terms of the overlap I, we can
reduce the weight as follows, where wI = wα for α that corresponds to I:

∑
α

∑
i

1(i,j)∈αA
(k)
i wα =

min(k,l)∑
I=0

∑
i

1|j|=l1|i∩j|=I1|i|=kA
(k)
i wI . (22)

With this, the layer in Eq. 21 reduces to:

L(k)→(l)(A
(k))j = 1|j|=l

min(k,l)∑
I=0

∑
i

1|i∩j|=IA
(k)
i wI + bl

 . (23)

Note that 1|i|=k in weight application was removed as A(k) already contains
nonzero entries only for |i| = k (see Lemma 2).

We finish by handling I = 0 in weight application as a special case:

1|j|=l

min(k,l)∑
I=0

∑
i

1|i∩j|=IA
(k)
i wI

= 1|j|=l

min(k,l)∑
I=1

∑
i

1|i∩j|=IA
(k)
i wI +

∑
i

1|i∩j|=0A
(k)
i w0

 (24)

= 1|j|=l

min(k,l)∑
I=1

∑
i

1|i∩j|=IA
(k)
i (wI − w0) +

∑
i

1|i∩j|≥0A
(k)
i w0

 (25)

= 1|j|=l

min(k,l)∑
I=1

∑
i

1|i∩j|=IA
(k)
i w′

I +
∑
i

A
(k)
i w0

 . (26)

This modification is not strictly required, but makes practical implementation
much easier as I = 0 case reduces to global pooling. By rewriting w′

I as wI , we
finally arrive at the reduced layer in Eq. (3).

Proof of Theorem 1 (Section 3.2) As a direct proof upon tensor sequences
is not straightforward, we first pack the entire sequence of tensors A(:K) that
represent a hypergraph into an equivalent symmetric order-K tensor A[K] ∈
RnK×d. Then, we show that the maximally expressive equivariant linear layer

L[K]→[L] : RnK×d → RnL×d for the packed tensors is equivalent to L(:K)→(:L) for
tensor sequences, and thus they are maximally expressive.

We first characterize the packed tensors with the following lemma:

Lemma 3. A sequence of tensors A(:K) =
(
A(k)

)
k≤K

that represent a hyper-

graph (Definition 3) can be represented as an equivalent symmetric order-K

tensor A[K] ∈ RnK×d.

Equivariant Hypergraph Neural Networks 5

Proof. Let us define A[K] ∈ RnK×d as follows:

A
[K]
(i1,...,iK) = A

(|{i1,...,iK}|)
{i1,...,iK} , (27)

where {i1, ..., iK} denotes the set of unique entries in (i1, ..., iK) ordered arbitrarily
(note that arbitrary ordering always gives the same value as A(k) is symmetric).
From A[K], we can retrieve the original sequence of tensors

(
A(k)

)
k≤K

by using

all order-K multi-indices that contain k unique entries to index A[K] to construct
each A(k).

Now, we prove Theorem 1.

Proof. We prove by showing the equivalence of L[K]→[L] (Eq. (14)) to the collec-

tion
(
L(k)→(l)

)
k≤K,l≤L

(Eq. (23)).

Let us begin from the bias. Due to the symmetry of output of L[K]→[L], the
set of all j ∈ [n]L with l unique entries specify a single equivalence class β, which
we write βl. With this, the biases in Eq. (14) can be rewritten as follows:∑

β

1j∈βbβ =
∑
l≤L

1|j|=lbβl
(28)

This is equivalent to the collection of bias applications in
(
L(k)→(l)

)
k≤K,l≤L

.

We now move to the weight. Due to the symmetry of input and output of
L[K]→[L], the set of all (i, j) for i ∈ [n]K , j ∈ [n]L with k unique entries in i, l
unique entries in j, and I tying relations ia = ib = ... = jc = jd specify a single
equivalence class α, which we write αk,l,I . With this, the weights in Eq. (14) can
be rewritten as follows:

∑
α

∑
i

1(i,j)∈αA
[K]
i wα =

∑
k≤K

∑
l≤L

min(K,L)∑
I=0

∑
i

1|j|=l1|i∩j|=I1|i|=kA
[K]
i wαk,l,I

(29)

This is computationally equivalent to the collection of weight applications in(
L(k)→(l)

)
k≤K,l≤L

.

Proof of Theorem 2 (Section 3.4)

Proof. Our target of approximation is the following, the output of weight appli-
cation from Eq. (6) (Section 3.3):

w(A(:K))l,j =

K∑
I=0

∑
k≤K

∑
i

BI
i,jA

(k)
i W(k, l, I), (30)

where BI
i,j =

{
1|i∩j|=I if I ≥ 1

1 if I = 0
. (31)

6 J. Kim et al.

Note that we moved the summation
∑min(k,l)

I=1 out of
∑

k≤K , and adjusted

the summation range to
∑K

I=1. This does not change the output because for any
I ≥ min(k, l) we have 1|i∩j|=I = 0.

We now introduce MLPs ϕ1 : N × Rd → RKd, ϕ2 : N × RKd → R(1+K)Kd,
and ϕ3 : N× R(1+K)Kd → Rd to model appropriate functions based on universal
approximation [25].

First, we make ϕ1 output the following, where ϵ1 is approximation error:

ϕ1(k,X)(k−1)d+1:kd = X+ ϵ1, (32)

so that ϕ1(0,X) places X on the first d channels of the output, ϕ1(1,X) places X

on the d+1 : 2d channels of the output, and so on. Then,
∑

k≤K

∑
i B

I
i,jϕ1(k,A

(k)
i)

gives channel concatenation of
(∑

i B
I
i,jA

(k)
i

)
k≤K

, which we denote YI .

Then, we make ϕ2 output the following, where ϵ2 is approximation error:

ϕ2(I,Y)IKd+1:(I+1)Kd = Y + ϵ2. (33)

Then,
∑K

I=0 ϕ2(I,YI) gives a concatenation of Y0:K , which is equivalently

concatenation of

((∑
i B

I
i,jA

(k)
i

)
k≤K

)
I≤K

.

Finally, we let ϕ3 output the following, where ϵ3 is approximation error:

ϕ3(l,Z) =

K∑
I=0

∑
k≤K

Z(IK+k−1)d+1:(IK+k)dW(k, l, I) + ϵ3, (34)

which, by indexing back through Z, Y, and X, gives w(A(:K))l,j.
We finish by rewriting ϕ3(l,Z) as follows:

ϕ3(l,Z) = ϕ3

l,
∑
I≥0

ϕ2

I,
∑
k≤K

∑
i

BI
i,jϕ1(k,A

(k)
i)

 , (35)

which is equivalent to the output of ϕ3 of EHNN-MLP in Eq. (7). Therefore, with
ϕ1, ϕ2, and ϕ3 approximating the functions in Eq. (32), Eq. (33), and Eq. (34)
respectively, the output of ϕ3 of EHNN-MLP can approximate the output of
weight application of EHNN (Eq. (6)) to arbitrary precision3.

Proof of Theorem 3 (Section 3.4)

Proof. We can reduce an EHNN-MLP layer to an AllDeepSets layer with following
procedure. First, from Eq. (7), we let ϕ1(k,X) = ϕ′

1(X), ϕ3(l,X) = ϕ′
3(X), and

B(l) = 0 to remove conditioning on hyperedge orders k and l. Then we let
ϕ2(I,X) = 1IX to ablate the global interaction (I = 0) and remove conditioning
on I ≥ 1. By renaming ϕ′

1 to ϕ1 and ϕ′
3 to ϕ2, we get the AllDeepSets layer

(Eq. (12)). Yet, an AllDeepSets layer cannot reduce to an EHNN-MLP layer as
it cannot model interactions between non-overlapping hyperedges (I = 0).
3 The overall error depend on the approximation error of MLPs (ϕ1, ϕ2, ϕ3) at each
step, and uniform bounds and continuity of the modeled functions [25].

Equivariant Hypergraph Neural Networks 7

A.2 In-Depth Comparison of EHNN and AllSet (Section 3.4)

Note that in the proof of Theorem 3, we leveraged the simple property that mes-
sage passing of AllDeepSets cannot account for long-range dependency modeling
of EHNN. Then a natural question arises here: if we rule out the presence of
global interaction, can the local message passing of EHNN be potentially better
than that of current message passing networks? Our analysis suggests so. More
specifically, in practical scenarios when local message aggregation cannot be
multiset universal, the explicit hyperedge order conditioning of EHNN might help.
To demonstrate this, we bring a powerful, Transformer-based characterization of
AllSet framework called AllSetTransformer:

AllSetAttn(A(:K))l,j = 1|j|=l

H∑
h=1

∑
k≤K

∑
i

αh
i,jϕ1(A

(k)
i), (36)

AllSetTransformer(A(:K)) = AllSetAttn(A(:K)) +MLP(AllSetAttn(A(:K))),
(37)

with H the number of heads, and attention coefficients αh
i,j computed with a

query matrix Q ∈ RH×dH , a key network K : Rd → RH×dH , and activation σ(·):

αh
i,j = σ

(
QhK

(
A

(k)
i

)⊤
h
/
√
dH · 1|i∩j|=I

)
. (38)

An interesting fact here is that when we take the activation for attention
σ(·) as any kinds of normalization including softmax, attention mechanism of
AllSetTransformer can fail to model even trivial multiset functions. A simple
example is that they cannot count the number of input hyperedges that overlap
with each output hyperedge. As a simple demonstration, if input hypergraph is

a node set A(1) ∈ Rn×d with identical features A
(1)
i = 1, an AllSetTransformer

layer that outputs features of hyperedges E cannot learn node counting i.e., for
output Y, Ye = |e| for e ∈ E. This is because, as attention normalizes over keys,
all outputs of AllSetAttn (Eq. (36)) is always Hϕ1(1). On the other hand, the
hyperedge order-aware message passing of EHNN-Transformer can easily solve
the problem by forwarding l.

Let us finish with stronger expressiveness of EHNN-Transformer (Eq. (10))
compared to AllSetTransformer:

Theorem 4. An AllSetTransformer layer (Eq. (37)) is a special case of EHNN-
Transformer layer (Eq. (10)), while the opposite is not true.

Proof. We can reduce an EHNN-Transformer layer to an AllSetTransformer
layer with following procedure. First, from Eq. (9), we let ϕ1(k,X) = ϕ′

1(X),
ϕ3(l,X) = X, and B(l) = 0 to remove conditioning on hyperedge orders k and
l. Then we let ϕ2(I,X) = 1IX to ablate the global interaction (I = 0) and
remove conditioning on I ≥ 1. Lastly, from Eq. (11), we let Q(I) = Q and
K(I,X) = K(X). By renaming ϕ′

1 to ϕ1, we get the AllSetTransformer layer
(Eq. (37)). Yet, an AllSetTransformer cannot reduce to an EHNN-Transformer
as it cannot model interactions between non-overlapping hyperedges (I = 0).

8 J. Kim et al.

Table 5: Statistics of the datasets.

(a) Statistics of k-edge identification dataset.

Dataset
Test involves only seen k Test involves unseen k

Interpolation Extrapolation

nodes 100 100 100

edges 10 10 10

train edge orders 2-10 2-4, 8-10 2-7

test edge orders 2-10 2-10 2-10

(b) Statistics of node classification dataset.

Dataset Zoo 20Newsgroups Mushroom NTU2012 ModelNet40 Yelp House Walmart

nodes 101 16242 8124 2012 12311 50758 1290 88860

edges 43 100 298 2012 12311 679302 341 69906

feature 16 100 22 100 100 1862 100 100

class 7 4 2 67 40 9 2 11

(c) Statistics of visual keypoint matching dataset.

Dataset Willow PASCAL-VOC

categories 5 20

images 256 11,530

keypoints/image ¿10 6-23

A.3 Experimental Details (Section 4)

We provide detailed experimental details including dataset statistics and hyper-
parameter search procedure. We provide dataset statistics in Table 5 and optimal
hyperparameter settings in Table 6.

Synthetic k-edge Identification For synthetic k-edge identification, we used
small datasets composed of 100 train and 20 test hypergraphs, each with 100
nodes and randomly wired 10 hyperedges. In input hypergraph, we pick a random
hyperedge and mark its nodes with a binary label. The task is to identify (classify)
every other nodes whose hyperedge order is the same with the marked one. For
default training set, we sample hyperedges of orders ∈ {2, ..., 10}. To further test
generalization of models to unseen orders, we use two additional training sets
where hyperedges are sampled without order-{5, 6, 7} hyperedges (interpolation)
or order-{8, 9, 10} hyperedges (extrapolation) as in Table 5a. For all models, we
use simple two-layer architecture that first converts the node labels to hyperedge
features (V → E) then maps them back to nodes (E → V) for classification.
For all models we set hidden dimension to 64, and for EHNN-Transformer and
AllSetTransformer we set number of attention heads to 4.

Equivariant Hypergraph Neural Networks 9

Table 6: Optimal hyperparameters for each dataset. lr, wd, d, h each refers to
learning rate, weight decay, hidden dimension, and number of heads. domlp refers
to dropout rate on MLP and dolocal/doglobal refers to dropout rate on local/global
interactions. dc refers to classifier hidden dimension.

(a) Optimal hyperparameter for node classification datasets.

EHNN-MLP EHNN-Transformer

lr wd d domlp lr wd h d domlp dolocal doglobal dc

Zoo 0.001 0 128 0 0.001 0 8 256 0 0 0 128

20Newsgroups 0.001 1e−5 256 0 0.001 1e−5 8 256 0 0 0 64

Mushroom 0.001 1e−5 128 0 0.001 1e−5 4 256 0 0 0 128

NTU2012 0.001 0 256 0.2 0.001 1e−5 8 256 0.2 0.1 0.1 64

ModelNet40 0.001 1e−5 256 0.2 0.001 1e−5 4 256 0 0 0 64

Yelp 0.001 0 64 0 0.001 0 8 64 0 0 0 128

House(1) 0.001 0 256 0.2 0.001 1e−5 4 64 0.2 0 0 64

Walmart(1) 0.001 0 256 0.2 0.001 0 8 256 0.2 0 0 64

House(0.6) 0.001 0 128 0 0.001 0 4 256 0 0 0 64

Walmart(0.6) 0.001 1e−5 256 0.2 0.001 1e−5 8 128 0.2 0 0 64

(b) Optimal hyperparameter for visual keypoint matching datasets.

EHNN-MLP EHNN-Transformer

lr wd d domlp lr wd h d domlp dolocal doglobal

Willow 2e−4 0.5 32 0 2e−4 0.5 4 32 0.1 0 0.5

PASCAL-VOC 2e−4 0.5 32 0 2e−4 0.5 4 128 0 0 0

Table 7: Results for semi-supervised node classification. Average accuracy (%)
over 20 runs are shown with standard deviation.

Zoo 20Newsgroups mushroom NTU2012 ModelNet40 Yelp House(1) Walmart(1) House(0.6) Walmart(0.6) avg. rank (↑)

MLP 87.18 ± 4.44 81.42 ± 0.49 100.00 ± 0.00 85.52 ± 1.49 96.14 ± 0.36 31.96 ± 0.44 67.93 ± 2.33 45.51 ± 0.24 81.53 ± 2.26 63.28 ± 0.37 6.4
CEGCN 51.54 ± 11.19 OOM 95.27 ± 0.47 81.52 ± 1.43 89.92 ± 0.46 OOM 62.80 ± 2.61 54.44 ± 0.24 64.36 ± 2.41 59.78 ± 0.32 11.5
CEGAT 47.88 ± 14.03 OOM 96.60 ± 1.67 82.21 ± 1.23 92.52 ± 0.39 OOM 69.09 ± 3.00 51.14 ± 0.56 77.25 ± 2.53 59.47 ± 1.05 10.5
HNHN 93.59 ± 5.88 81.35 ± 0.61 100.00 ± 0.01 89.11 ± 1.44 97.84 ± 0.25 31.65 ± 0.44 67.80 ± 2.59 47.18 ± 0.35 78.78 ± 1.88 65.80 ± 0.39 5.9
HGNN 92.50 ± 4.58 80.33 ± 0.42 98.73 ± 0.32 87.72 ± 1.35 95.44 ± 0.33 33.04 ± 0.62 61.39 ± 2.96 62.00 ± 0.24 66.16 ± 1.80 77.72 ± 0.21 7.8
HCHA 93.65 ± 6.15 80.33 ± 0.80 98.70 ± 0.39 87.48 ± 1.87 94.48 ± 0.28 30.99 ± 0.72 61.36 ± 2.53 62.45 ± 0.26 67.91 ± 2.26 77.12 ± 0.26 8.1

HyperGCN N/A 81.05 ± 0.59 47.90 ± 1.04 56.36 ± 4.86 75.89 ± 5.26 29.42 ± 1.54 48.31 ± 2.93 44.74 ± 2.81 78.22 ± 2.46 55.31 ± 0.30 12.4
UniGCNII 93.65 ± 4.37 81.12 ± 0.67 99.96 ± 0.05 89.30 ± 1.33 98.07 ± 0.23 31.70 ± 0.52 67.25 ± 2.57 54.45 ± 0.37 80.65 ± 1.96 72.08 ± 0.28 5.8

HAN (full batch) 85.19 ± 8.18 OOM 90.86 ± 2.40 83.58 ± 1.46 94.04 ± 0.41 OOM 71.05 ± 2.26 OOM 83.27 ± 1.62 OOM 9.9
HAN (minibatch) 75.77 ± 7.10 79.72 ± 0.62 93.45 ± 1.31 80.77 ± 2.36 91.52 ± 0.96 26.05 ± 1.37 62.00 ± 9.06 48.57 ± 1.04 82.04 ± 2.68 63.1 ± 0.96 10.6

AllDeepSets 95.39 ± 4.77 81.06 ± 0.54 99.99 ± 0.02 88.09 ± 1.52 96.98 ± 0.26 30.36 ± 1.57 67.82 ± 2.40 64.55 ± 0.33 80.70 ± 1.59 78.46 ± 0.26 5.4
AllSetTransformer 97.50 ± 3.59 81.38 ± 0.58 100.00 ± 0.00 88.69 ± 1.24 98.20 ± 0.20 36.89 ± 0.51 69.33 ± 2.20 65.46 ± 0.25 83.14 ± 1.92 78.46 ± 0.26 2.4

EHNN-MLP 91.15 ± 6.13 81.31 ± 0.43 99.99 ± 0.03 87.35 ± 1.42 97.74 ± 0.21 35.80 ± 0.77 67.41 ± 2.83 65.65 ± 0.36 82.29 ± 1.87 78.80 ± 0.18 5.0
EHNN-Transformer 93.27 ± 6.59 81.42 ± 0.53 100.00 ± 0.00 89.60 ± 1.36 98.28 ± 0.18 36.48 ± 0.40 71.53 ± 2.59 68.73 ± 0.35 85.09 ± 2.05 80.05 ± 0.27 1.6

Semi-supervised Classification We use 8 datasets used in Chien et. al. [13]
(Table 5b). Among them, three datasets (20Newsgroups, Mushroom, Zoo) are
from the UCI Categorical Machine Learning Repository, and two (ModelNet40,
NTU2012) are from computer vision domain where the objective is to classify vi-
sual objects. Other three (Yelp, House, Walmart) were crafted in Chien et. al. [13].
In Yelp, the nodes correspond to restaurants where the node labels correspond
to the number of stars provided in the yelp ”restaurant” catalog. For House,

10 J. Kim et al.

each node and label is a member of the US House of Representatives and their
political party. Nodes of Walmart represent products where node label corre-
sponds to product category, and set of products purchased together are tied with
a hyperedge. Since House and Walmart does not contain node features, the node
features are created by adding Gaussian noise to one-hot node labels. We fix
node feature dimension to 100 as in prior work.

We use a composition of two layers that maps node features to hyperedge
features (V → E) and maps the features back to nodes (E → V) as a module, and
use a single module for EHNN-MLP and use a stack of two modules for EHNN-
Transformer. For hyperparameter search, we fix learning rate as 0.001 and run
grid search over hidden dimension {64, 128, 256, 512}, weight decays {0, 0.00001},
and MLP dropout {0, 0.2}. For EHNN-Transformer, we also search number of
heads over {4, 8} for multi-head attention, attention output dropout {0, 0.1},
and classifier hidden dimension {64, 128}. The final selection of hyperparameters
based on grid search are outlined in Table 6a.

Along with the average accuracy reported in the main text, we report the
standard deviation over 20 runs with random train/val/test splits and model
initialization in Table 7.

Visual Keypoint Matching For evaluation under inductive setting, we test
the performance of EHNN on keypoint matching benchmarks implemented in
the ThinkMatch repository [55]. We borrow two real image datasets, Willow
ObjectClass [14] and PASCAL-VOC [9,17] with Berkeley annotations (Table 5c),
as well as provided train/test splitting pipelines from the repository. For training,
we use binary cross entropy loss between two permutation matrices: one from
ground-truth matching and another from node classification on the association
hypergraph. Performance at test time is evaluated by measuring the matching
accuracy via F1-score. We compare our EHNN methods against 10 different meth-
ods, by reproducing their performance based on implementation in ThinkMatch4.
Several methods are excluded due to numerical instability errors. For EHNN
methods, we follow the same keypoint feature extraction and association hy-
pergraph construction procedure as in NHGM-v2: we simply replace the local
message-passing GNN module in NHGM-v2 with an EHNN-MLP/Transformer.

To find optimal hyperparameters for EHNN-MLP, we run grid search over
hidden dimension sizes {16, 32, 64, 96, 128}. For the Transformer variant, we
search through number of layers {1, 2, 3} and number of attention heads {2, 4,
8, 16} in addition to hidden dimension sizes. For EHNN-Transformer we also
check applying dropouts within [0.1, 0.5] separately to global and local attention
outputs respectively. The final selected hyperparameters are outlined in Table 6b.
For training EHNN methods, we use the default setting used for NHGM-v2 in
ThinkMatch. For Willow, we train for 10 epochs with learning rate that starts at
2e−4 and decays into half at epoch 2. For PASCAL-VOC, we train for 20 epochs
with learning rate that also starts 2e−4 and decays into half at epoch 2.

4 https://github.com/Thinklab-SJTU/ThinkMatch

https://github.com/Thinklab-SJTU/ThinkMatch

Equivariant Hypergraph Neural Networks 11

Table 8: Ablation on k-edge identification (5 runs each).
Seen k Unseen k

Global interaction Order info. MLP realization Interpolation Extrapolation

AllDeepSets [13] × × ⃝ 76.99±0.98 79.6±0.86 79.01±2.82

EHNN-MLP (ablated)
• w/o global and order × × ⃝ 78.94±1.18 78.6±1.66 77.97±1.83
• w/o global interaction × ⃝ ⃝ 80.34±2.87 77.86±2.38 79.56±3.03
• w/o order embedding ⃝ × ⃝ 84.05±1.77 81.30±3.56 80.17±3.34

EHNN (Section 3.3)
• Lookup table for W,B ⃝ ⃝ × 87.09±2.49 84.09±1.29 80.20±2.21
• Hypernetwork for W,B ⃝ ⃝ × 83.74±2.89 83.19±1.57 79.93±2.61

EHNN-MLP (Section 3.4) ⃝ ⃝ ⃝ 98.02±0.73 90.70±2.90 85.65±2.89

Table 9: Runtime and memory cost (20 runs each).

Forward (ms) Backward (ms) Peak mem. (MB)

AllDeepSets [13] 5.538±0.689 3.470±0.071 4.608±0.000
AllSetTransformers [13] 6.883±0.657 5.037±0.681 5.077±0.000

EHNN (Section 3.3)
• Lookup table for W,B 28.68±0.535 71.71±3.597 14.43±0.000
• Hypernetwork for W,B 31.56±1.110 76.78±6.044 17.40±0.000

EHNN-MLP (Section 3.4) 7.517±0.865 7.179±0.548 7.361±0.000
EHNN-Transformer (Section 3.4) 14.51±1.146 13.41±0.0962 11.98±0.000

A.4 Additional Experiments

We report additional experimental results that could not be included in the main
text due to space restriction.

Comparative and Ablation Experiments We perform a comprehensive
ablation experiment on k-edge identification (Section 4.1) by gradually ablating
each component of EHNN-MLP (Section 3.4) until it reduces to message passing
(≈AllDeepSet [13]). We also compare it against EHNN (Section 3.3) which is
maximally expressive but, unlike EHNN-MLP, is not realized as 3 elementwise
MLPs. The results are in Table 8. We find ablating any component of EHNN-MLP
degrades performance until similar to AllDeepSet.

Time and Memory Cost Analysis We perform runtime and memory cost
analysis on an A100 GPU using random hypergraphs with 1024 nodes and 128
hyperedges with orders∼ U(2, 10). Results are in Table 9. While näıve EHNN
(Section 3.3) suffers from high cost, EHNN-MLP/Transformer (Section 3.4) are
significantly more efficient, improving time and memory cost from 5− 20× to
2− 3× w.r.t. highly optimized message passing while still maximally expressive.

	Equivariant Hypergraph Neural Networks

