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Abstract. Knowledge distillation (KD) is an efficient approach to trans-
fer the knowledge from a large “teacher” network to a smaller “student”
network. Traditional KD methods require lots of labeled training sam-
ples and a white-box teacher (parameters are accessible) to train a good
student. However, these resources are not always available in real-world
applications. The distillation process often happens at an external party
side where we do not have access to much data, and the teacher does not
disclose its parameters due to security and privacy concerns. To overcome
these challenges, we propose a black-box few-shot KD method to train
the student with few unlabeled training samples and a black-box teacher.
Our main idea is to expand the training set by generating a diverse set of
out-of-distribution synthetic images using MixUp and a conditional vari-
ational auto-encoder. These synthetic images along with their labels ob-
tained from the teacher are used to train the student. We conduct exten-
sive experiments to show that our method significantly outperforms re-
cent SOTA few/zero-shot KD methods on image classification tasks. The
code and models are available at: https://github.com/nphdang/FS-BBT

1 Introduction

Despite achieving many great successes in real-world applications [11,34,43], deep
neural networks often have millions of weights to train, thus require heavy com-
putation and storage [31]. To make deep neural networks smaller and applicable
to real-time devices, especially for edge devices with limited resources, knowledge
distillation (KD) methods have been proposed [17,2,10].

The main goal of KD is to transfer the knowledge from a large pre-trained
network (called teacher) to a smaller network (called student) so that the student
can perform as well as the teacher [17,36]. Most of existing KD methods follow
the idea introduced by Hinton et al. [17], which suggests to use both the ground-
truth labels and the teacher’s predictions as training signals for the student. The
intuition behind this approach is that if the student network not only learns from
its training data but also is guided by a powerful teacher network pre-trained
on a large-scale data, then the student will improve its classification accuracy.

The success of existing KD methods relies on two strong assumptions. First,
the student’s training set must be very large and labeled (it is usually the same as
the teacher’s training set) [2,17,19,36]. Second, the teacher is a white-box model
so that the student has access to the teacher’s internal details (e.g. gradient,
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parameters, feature maps, logits) [1,40,8,3]. However, these assumptions rarely
hold in real-world applications. Typically, the distillation happens at an external
party side where we can only access to few unlabeled samples. For example,
DeepFace [35] developed by Facebook was trained on 4 million non-public facial
images. For distilling a student network from DeepFace, an external party may
not have access to the face database used by Facebook due to various reasons
including privacy. Instead, its training set would typically comprise of a few
thousands images that are accessible at the external party side. In some cases, the
pre-trained teacher models are black-box i.e. they are released without disclosing
their parameters, which is often the case with cloud-deployed machine learning
web-services. For example, IBM Watson Speech-to-Text [32] only provides its
APIs to end-users to convert audio and voice to written text.

To mitigate the demand of large training data, several few-shot KD methods
were proposed for KD with few samples [3,20], but they still require a white-box
teacher. To the best of our knowledge, there is only one method named BBKD
[37] to train the student with few samples and a black-box teacher. BBKD uses
MixUp to synthesize training images and active learning to select the most uncer-
tain mixup images to query the teacher model. Although BBKD shows significant
improvements over current SOTA few/zero-shot KD methods, it exhibits two no-
table limitations. First, it has to synthesize a huge pool of candidate images. For
example, given N = 1000 original images, it constructs C = 106 candidate im-
ages, and selects M = 20000 synthetic images from C to train the student. Since
the number of candidate images C is very large, it requires expensive computa-
tion and consumes large memory resource. Second, it has to train the student
multiple times until a stopping criteria. Although the student network is smaller
than the teacher network, it is still a deep neural network. Training the student
multiple times must be avoided since it costs both resources and training time.
Therefore, few-shot KD with a black-box teacher in a resource- and time-efficient
manner is an open problem.

Our method. To solve the above problem, we propose a novel unsupervised
black-box few-shot KD method i.e. training the student with only few unlabeled
images and a black-box teacher. Our method offers a resource- and time-efficient
KD process, which addresses the bottlenecks of BBKD. First, it does not need
to create any pool of candidate images; instead it directly generates M syn-
thetic images from N original images to train the student. Second, it only trains
the student network in one-pass; no active learning is required and no multiple
student models are repeatedly created.

Our method has three main steps. First, we generate synthetic images from
a given small set of original images. Second, the synthetic images are sent to
the teacher model to query their soft-labels (i.e. class probabilities). Finally, the
original and synthetic images along with their soft-labels are used to train the
student network. Our method is illustrated in Figure 1.

The key component in our method is the image generator, where we propose
two approaches to generate synthetic images. First, we use the MixUp method
[18,12,4] to synthesize a virtual image by a weighted combination of two original
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Fig. 1. Knowledge distillation with few samples and black-box teacher. Given a black-
box teacher and a small set of original images, we propose to employ MixUp method
and CVAE generative model to generate synthetic images to train the student network.

images. Mixup images help us to cover the manifold of natural images. Second,
we use Conditional Variational Autoencoder (CVAE) [33] – a generative model
to generate additional synthetic images. While MixUp is useful to some extent,
mixup images too close to original images do not add much value to the training
data. Such disqualified mixup images are replaced by images generated from
CVAE. Using CVAE, we can generate interpolated images i.e. the output image
semantically mixes characteristics from the original images. As a result, we can
enrich the training set and improve the diversity of training images, which is
very useful when training the student network.

Our contribution. To summarize, we make the following contributions.

1. We propose FS-BBT (knowledge distillation with Few Samples and Black-
Box Teacher), a novel method offers a successful KD process even with few
unlabeled training samples and a black-box teacher model.

2. We develop an efficient approach to train the student network in resource-
and time-efficient manner, where we do not need to create a large pool of
candidate images and only train the student network one time.

3. We empirically validate our proposed method on several image classifica-
tion tasks, comparing it with both standard and SOTA few/zero-shot KD
methods. The experimental results show that our method significantly out-
performs competing baselines.

2 Related Works

Knowledge distillation. Knowledge distillation (KD) has become popular
since Hinton et al. introduced its concept in their teacher-student framework
[17]. The main goal of KD is to train a compact student network by mimick-
ing the softmax output of a high-capacity teacher network. Many KD methods
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have been proposed, and they can be categorized into three groups: relation-
based, feature-based, and response-based methods. Relation-based methods not
only use the teacher’s output but also explore the relationships between different
layers of teacher when training the student network. Examples include [40,23,30].
Feature-based methods leverage both the teacher’s output at the last layer and
the intermediate layers when training student network [1,19,30]. Response-based
methods directly mimic the final prediction of the teacher network [17,7,26,29].

Knowledge distillation with limited data. To successfully train the stu-
dent network, most KD methods assume that both the student’s training data
and the teacher’s training data are identical. For example, [17,6] pointed out that
the student only achieved its best accuracy when it had accessed to the teacher’s
training data. Similarly, [27] mentioned the typical setting in KD methods was
the student network trained on the teacher’s training data. Recent SOTA meth-
ods [19,2,36] also trained both teacher and student networks on the same dataset.
In practice, the teacher’s training data could be unavailable due to transmission
limitation or privacy while we could only collect few samples for the student’s
training data. Several few/zero-shot KD methods were developed to deal with
this situation [3,28,8,41,20]. However, all of these methods require a white-box
teacher to access to its internal details (e.g. gradient information, weights, fea-
ture maps, logits...) to generate synthetic training samples. As far as we know,
only BBKD [37] requires few training samples and zero knowledge of the teacher
(i.e. black-box teacher). However, it is computation and resource intensive as it
requires a large pool of candidate images and extensive iterative training.

3 Framework

3.1 Problem definition

Given a small set of unlabeled images X = {xi}Ni=1 and a black-box teacher T ,
our goal is to train a student S on X s.t. S’s performance is comparable to T ’s.

A direct solution for the above problem is to apply the standard KD method
[17]. We first query the teacher to obtain the hard-label (i.e. one-hot encoding) yi
for each sample xi ∈ X , and then create a labeled training set D = {xi, yi}Ni=1.
Finally, we train the student network with the standard KD loss function:

L =
∑

(xi,yi)∈D

(1− ω)LCE(y
S
xi
, yi) + ωLKL(y

S
xi
, yTxi

), (1)

where ySxi
, yTxi

, yi are the student’s softmax output, the teacher’s softmax output,
and the hard-label of a sample xi, LCE is the cross-entropy loss, LKL is the
Kullback–Leibler divergence loss, and ω is a trade-off factor to balance the two
loss terms. Equation (1) does not use the temperature factor as in Hinton’s KD
method [17] since this requires access to the pre-softmax activations (logits) of
teacher, which violates our assumption of “black-box” teacher.

Although training the student network via Equation (1) is a possible way, it
is not a good solution as X only contains very few samples while standard KD
methods typically require lots of training samples [17,19,2,36].
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3.2 Proposed method FS-BBT

We propose a novel method to solve the above problem, which has three main
steps: (1) we generate mixup images from original images contained in X , (2)
we replace disqualified mixup images by images generated from CVAE, and (3)
we train the student with a combination of original, mixup, and CVAE images.

Generating mixup images. Our idea is to use MixUp [18] – one of recently
proposed data augmentation techniques to expand the training set X .

Inspired by BBKD [37], we generate M mixup images from N original images
(typically, N ≪ M). Given two original images xi, xj ∈ X , we use MixUp to
generate a synthetic image by a weighted combination between xi and xj :

xmu(λ) = λxi + (1− λ)xj , (2)

where the coefficient λ ∈ [0, 1] is sampled from a Beta distribution.
Let X = [x1, x2, ..., xN ] be the vector of original images. We first sample two

M -length vectors X1 = [x1
1, x

1
2, ..., x

1
M ] and X2 = [x2

1, x
2
2, ..., x

2
M ], where x1

i , x
2
i ∼

X. We then sample a vector λ = [λ1, λ2, ..., λM ] from a Beta distribution, and
mixup each pair of two images in X1 and X2 using Equation (2):

Xmu =


λ1x

1
1 + (1− λ1)x

2
1

λ2x
1
2 + (1− λ2)x

2
2

...
λMx1

M + (1− λM )x2
M

 (3)

The goal of mixing up original images is to expand the initial set of training
images X as much as possible to cover the manifold of natural images.

1

𝜆 = 0.58 𝜆 = 0.98

Fig. 2. Desirable vs. disqualified mixup im-
ages. At λ = 0.58, the mixup image shows a
good combination between two original im-
ages “horse” and “ship” but at λ = 0.98, it
looks almost the same as “horse”.

However, when mixing up two
original images, there is a case that
the mixup image is very similar to
one of two original images, making it
useless. This problem happens when
λi ≈ 0 or λi ≈ 1. Figure 2 shows two
examples of desirable vs. disqualified
mixup images.

To remove disqualified mixup im-
ages, we set a threshold α ∈ [0, 0.5],
and discard mixup images generated
with coefficient λi ≤ α or λi ≥ (1−α).

Let M1 be the number of remain-
ing mixup images after we filter out
the disqualified ones. Our next step
is to generate M2 = M − M1 syn-
thetic images from CVAE (we call
them CVAE images).

Generating CVAE images. We
first query the teacher model to obtain the hard-label yi for each sample xi ∈ X
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to create a labeled training set D = {xi, yi}Ni=1. We then train a Conditional
Variational Autoencoder (CVAE) model [33] using D to learn the distribution of
the latent variable z ∈ Rd, where d is the dimension of z. CVAE is a generative
model consisting of an encoder and a decoder. We use the encoder network to
map an image along with its label (x, y) ∈ D to a latent vector z that follows
P (z | y). From the latent vector z conditioned on the label y, we use the decoder
network to reconstruct the input image x. Following [33], we train CVAE by
maximizing the variational lower bound objective:

logP (x | y) ≥ E(logP (x | z, y))−KL(Q(z | x, y), P (z | y)), (4)

where Q(z | x, y) is parameterized by the encoder network that maps input
image x and its label y to the latent vector z, P (x | z, y) is parameterized by
the decoder network that reconstructs input image x from the latent vector z
and label y, E(logP (x | z, y)) is the expected likelihood, which is implemented
by a cross-entropy loss between the input image and the reconstructed image,
and P (z | y) ≡ N (0, I) is the prior distribution of z conditioned on y.

After the CVAE model is trained, we can generate images via G(z, y), where
z ∼ N (0, I), y is a label, and G is the trained decoder network.

Covering both in-distribution and out-of-distribution samples. To
generate M2 CVAE images, we sample (M2

2 )-length vector zN from the normal

distribution N (0, I) and (M2

2 )-length vector zU from the uniform distribution
U([−3, 3]d) (we choose the range [−3, 3] following [16,13]). We create vector
z = zN ⊕ zU , where ⊕ is the concatenation operator. We manually define a
M2-length vector ycvae, which contains the classes of generated images such that
the number of generated images for each class is equivalent. Finally, we generate
CVAE images xcvae = G(z, ycave).

The intuition behind our generation process is that: (1) Generating images
from zN ∼ N (0, I) will provide synthetic images within the distribution of X .
These images are interpolated versions of original images. (2) Generating images
from zU ∼ U([−3, 3]d) will provide synthetic images out-of the distribution of X .
These images are far way from the original ones, but they are expected to better
cover unseen images, which improves the student’s generalization.

Discussion. One can sample λi ∈ [α, 1−α] to generate M1 qualified mixup
images, then generateM2 CVAE images. This way requires two hyper-parameters
M1 and M2. While this is definitely possible, for simplicity we choose to aggre-
gate these two hyper-parameters into a single hyper-parameter M that controls
the total number of synthetic images. In experiments, we set the same values for
M as those in other few-shot KD methods [3,37] while M1 and M2 are automat-
ically computed based on M and α.

Training the student network. After the above steps, we obtain two
types of synthetic images – mixup and CVAE images. We send them to the
teacher model to obtain their softmax outputs (i.e. their class probabilities) as
the soft-labels for the images. We train the student network with the original
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and synthetic images along with their soft-labels using the following loss:

L =
∑

xi∈X∪Xmu∪Xcvae

LCE(y
S
xi
, yTxi

), (5)

where ySxi
, yTxi

are the student’s and the teacher’s softmax output, X , Xmu, Xcvae

are the set of original, mixup, and CVAE images, and LCE is the cross-entropy
loss. Although we train the student by matching the teacher’s softmax outputs,
our loss function is still applicable in case the teacher only returns top-1 labels
[39]. Algorithm 1 summarizes our proposed method FS-BBT.

Algorithm 1: The proposed FS-BBT algorithm.

Input: T : pre-trained black-box teacher network
Input: X = {xi}Ni=1: unlabeled training set
Input: M : number of synthetic images
Input: α: threshold to select mixup images
Output: S: student network

1 begin
2 query teacher T to obtain hard-label yi for each xi ∈ X ;

3 train CVAE model using D = {xi, yi}Ni=1;
4 sample λ = [λ1, ..., λM ] from a Beta distribution;
5 select M1 instances of λi s.t. α < λi < 1− α;
6 generate M1 mixup images Xmu using Eq. (3);
7 compute M2 = M −M1;

8 sample (M2
2
)-length vector zN ∼ N (0, I);

9 sample (M2
2
)-length vector zU ∼ U([−3, 3]d);

10 create vector z = zN ⊕ zU ;
11 design M2-length vector ycvae with class balance;
12 generate M2 CVAE images Xcvae = G(z, ycvae);
13 query teacher T to obtain soft-labels for X , Xmu, Xcvae;
14 train student S with X ,Xmu,Xcvae and their soft-labels using Eq. (5);

4 Experiments and Discussions

We conduct extensive experiments on five benchmark image datasets to evaluate
the classification performance of our method, comparing it with SOTA baselines.
Our main goal is to show that with the same number of original and synthetic
images, our method is much better than existing few/zero-shot KD methods.

4.1 Datasets

We use five image datasets, namely MNIST, Fashion-MNIST, CIFAR-10, CIFAR-
100, and Tiny-ImageNet. These datasets were often used to evaluate the classi-
fication performance of KD methods [17,3,8,28,37].
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4.2 Baselines

We compare our method FS-BBT with the following baselines:

– Student-Alone: the student network is trained on the student’s training data
D from scratch.

– Standard-KD : the student network is trained with the standard KD loss in
Equation (1). We choose the trade-off factor ω = 0.9, which is a common
value used in KD methods [17,36,42,25].

– FSKD [3]: this is a few-shot KD method, which generates synthetic training
images using adversarial technique. It requires a white-box teacher model to
generate adversarial samples to train the student network.

– WaGe [20]: this few-shot KD method integrates a Wasserstein-based loss
with the standard KD loss to improve the student’s generalization.

– BBKD [37]: this method uses few original images and a black-box teacher
model to train the student model. Its main idea is to use MixUp and active
learning to generate synthetic images. Since this is the closest work to ours,
we consider BBKD as our main competitor.

To have a fair comparison, we use the same teacher-student network architecture,
the same number of original and synthetic images N and M as in FSKD and
BBKD. We also set the same hyper-parameters (e.g. batch size and the number
of epochs) for Student-Alone, Standard-KD, and our FS-BBT. We use threshold
α = 0.05 to select qualified mixup images across all experiments. In an ablation
study in Section 4.7, we will investigate how different values for α affect our
method’s performance. We repeat each experiment five times with random seeds,
and report the averaged accuracy. For the baselines FSKD, WaGe, and BBKD,
we obtain their accuracy from the papers [20,37]1. We also compare with several
well-known zero-shot KD methods in Section 4.6.

4.3 Results on MNIST and Fashion-MNIST

Experiment settings. Following [3,28], we use the LeNet5 architecture [22] for
the teacher and LeNet5-Half (a modified version with half number of channels
per layer) for the student. We train the teacher network with a batch size of
64 and 20 epochs. As shown in Table 1, our teacher model achieves comparable
accuracy with that reported by BBKD in [37] (99.18% vs. 99.29% for MNIST
and 90.15% vs. 90.80% for Fashion-MNIST). We train the student network with
a batch size of 64 and 50 epochs. We train the CVAE with feed-forward neural
networks for both encoder and decoder, using a latent dimension of 2, a batch
size of 256, and 100 (200) epochs for MNIST (Fashion-MNIST). Following FSKD
[3] and BBKD [37], we set N = 2000 and M = 24000 for MNIST and N = 2000
and M = 48000 for Fashion-MNIST.

The MNIST and Fashion-MNIST datasets have 60K training images and 10K
testing images from 10 classes ([0, 1, ..., 9]).

1 This is possible because we use benchmark datasets, and the training and test splits
are fixed.
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Quantitative results. From Table 1, we can see that our method FS-BBT
outperforms Student-Alone and Standard-KD on both MNIST and Fashion-
MNIST. FS-BBT achieves 98.42% (MNIST) and 84.73% (Fashion-MNIST),
which is much better than Student-Alone achieving 95.97% and 81.37%. With
a support from the teacher model, Standard-KD is always better than Student-
Alone, for example, 83.87% vs. 81.37% on Fashion-MNIST.

Table 1. Classification results on MNIST and Fashion-MNIST. “Teacher” indicates
the accuracy of the teacher network on the test set. “Model” indicates whether the
teacher network is a black-box model. “N” shows the number of original images used
by each method. “Accuracy” is the accuracy of the student network on the test set.
The results of FSKD, WaGe, and BBKD⋆ are obtained from [20,37]. “⋆” means the
BBKD⋆ and FS-BBT⋆ methods use the same architecture (LeNet5) for both teacher
and student networks.

Dataset Method Teacher Model N Accuracy

MNIST

Student-Alone - - 2,000 95.97%
Standard-KD 99.18% Black 2,000 95.99%
FSKD [3] 99.29% White 2,000 80.43%
BBKD⋆ [37] 99.29% Black 2,000 98.74%
FS-BBT (Ours) 99.18% Black 2,000 98.42%
FS-BBT⋆ (Ours) 99.18% Black 2,000 98.91%

Fashion-MNIST

Student-Alone - - 2,000 81.37%
Standard-KD 90.15% Black 2,000 83.87%
FSKD [3] 90.80% White 2,000 68.64%
WaGe [20] 92.00% White 1,000 85.18%
BBKD⋆ [37] 90.80% Black 2,000 80.90%
FS-BBT (Ours) 90.15% Black 2,000 84.73%
FS-BBT⋆ (Ours) 90.15% Black 2,000 86.53%

Compared with FSKD and WaGe, FS-BBT significantly outperforms FSKD
on both MNIST and Fashion-MNIST while FS-BBT is similar with WaGe on
Fashion-MNIST.

Compared with BBKD, FS-BBT achieves a comparable accuracy with BBKD
on MNIST while FS-BBT outperforms BBKD by a large margin on Fashion-
MNIST, where our accuracy improvement is around 4%. Since BBKD uses the
same architecture LeNet5 for both teacher and student networks, we also report
the accuracy of our method with this setting, indicated by FS-BBT⋆. With
LeNet5 for the student network, we further achieve 2% gain (i.e. an improve-
ment of 6% over BBKD) on Fashion-MNIST.

4.4 Results on CIFAR-10 and CIFAR-100

Experiment settings. Following [3,28], we use AlexNet [21] and AlexNet-Half
(50% filters are removed) for teacher and student networks on CIFAR-10. We
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train the teacher network with a batch size of 512 and 50 epochs. Our teacher
model achieves a comparable accuracy with that reported by BBKD in [37]
(84.07% vs. 83.07%). We train the student network with a batch size of 128 and
100 epochs. We use ResNet-32 [15] for the teacher and ResNet-20 for the student
on CIFAR-100. We train student and teacher networks with a batch size of 16/32
and 200 epochs. For both CIFAR-10 and CIFAR-100, we train the CVAE model
with convolutional neural networks for both encoder and decoder, using a latent
dimension of 2, a batch size of 64, and 600 epochs. Like BBKD [37] and WaGe
[20], we set N = 2000 for CIFAR-10, N = 5000 for CIFAR-100, and M = 40000
for both datasets.

CIFAR-10 is set of RGB images with 10 classes, 50K training images, and
10K testing images while CIFAR-100 is with 100 classes, and each class contains
500 training images and 100 testing images. Since neither the accuracy reference
nor the source code is available for BBKD on CIFAR-100, we implement BBKD
by ourselves, and use the same teacher as in our method for a fair comparison.

Table 2. Classification results on CIFAR-10 and CIFAR-100. “N” shows the number
of original images used by each method. The results of FSKD, WaGe, and BBKD⋆ are
obtained from [20,37]. “⋆” means the BBKD⋆ and FS-BBT⋆ methods use the same
architecture (AlexNet) for both teacher and student networks. “†” means the result is
based on our own implementation.

Dataset Method Teacher Model N Accuracy

CIFAR-10

Student-Alone - - 2,000 54.59%
Standard-KD 84.07% Black 2,000 58.96%
FSKD [3] 83.07% White 2,000 40.58%
WaGe [20] 89.00% White 5,000 73.08%
BBKD⋆ [37] 83.07% Black 2,000 74.60%
FS-BBT (Ours) 84.07% Black 2,000 74.10%
FS-BBT⋆ (Ours) 84.07% Black 2,000 76.17%

CIFAR-100

Student-Alone - - 5,000 32.85%
Standard-KD 69.08% Black 5,000 36.79%
WaGe [20] 47.00% White 5,000 20.32%

BBKD† [37] 69.08% Black 5,000 53.41%
FS-BBT (Ours) 69.08% Black 5,000 56.28%

Quantitative results. From Table 2 we observe the similar results as in MNIST
and Fashion-MNIST. Student-Alone does not have a good accuracy. Standard-
KD improves 4% of accuracy over Student-Alone with the knowledge transferred
from the teacher.

On CIFAR-10, WaGe and BBKD greatly outperform FSKD, and our FS-
BBT is comparable with WaGe and BBKD. When we use the same architecture
AlexNet for both teacher and student as in BBKD, our variant FS-BBT⋆ is the
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best method, where it outperforms BBKD (the second best method) by around
2%. FS-BBT⋆ outperforms WaGe by around 3% even though WaGe uses much
more original training samples than ours (5K vs. 2K), and more powerful teacher
(89% vs. 84%).

On CIFAR-100, Student-Alone achieves low accuracy at around 32%. Standard-
KD is better than Student-Alone around 4% thanks to the knowledge transferred
from the teacher. Interestingly, WaGe works very poorly (only 20.32% of accu-
racy), becoming the worst method. Its unsatisfactory performance can be a con-
sequence of distilling from a low-accuracy teacher. BBKD is significantly better
than other methods with an improvement around 20-30%. Using the same num-
ber of original and synthetic images, our method FS-BBT achieves 3% gains
over BBKD thanks to the CVAE images generated in Section 3.2.

The above results suggest that replacing disqualified mixup images by syn-
thetic images generated from CVAE is an effective solution to improve the ro-
bustness and generalization of the student network on the unseen testing sam-
ples, as we discussed in Section 3.2.

4.5 Results on Tiny-ImageNet

Experiment settings. We use ResNet-32 and ResNet-20 for the teacher and
student. We train teacher and student networks with a batch size of 32 and
100 epochs. Our teacher model achieves a similar accuracy with literature [5]
(52.02% vs. 48.26%). We train CVAE in the same way as in CIFAR-100. We
set N = 10000 and M = 50000. Tiny-ImageNet has 100K training images, 10K
testing images, and 200 classes.

Table 3. Classification results on Tiny-ImageNet. “N” shows the number of original
images used by each method. “†” means the result is based on our own implementation.

Dataset Method Teacher Model N Accuracy

Tiny-ImageNet

Student-Alone (full) - - 100,000 48.81%
Student-Alone - - 10,000 23.19%
Standard-KD 52.02% Black 10,000 35.81%

BBKD† [37] 52.02% Black 10,000 40.01%
FS-BBT (Ours) 52.02% Black 10,000 43.29%

Quantitative results. Table 3 shows that Student-Alone reaches a very low
accuracy due to a large number of classes presented in this dataset. Standard-KD
is significantly better than Student-Alone with an improvement more than 12%.
Our method FS-BBT achieves 3% gains over BBKD (the second-best baseline).

We also train Student-Alone with full 100K original images and their soft-
labels provided by the teacher. This can be considered as an upper bound of all
few-shot KD methods as it uses the full set of training images. FS-BBT drops
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only 5% accuracy from Student-Alone with full training data although it requires
only 10% of training data. This proves the efficacy of our proposed framework.

4.6 Comparison with zero-shot (or data-free) KD methods

We also compare with several popular zero-shot KD methods, including Meta-
KD [24], ZSKD [28], DAFL [8], DFKD [38], and ZSDB3KD [39].

Table 4 reports the classification accuracy on MNIST, Fashion-MNIST, and
CIFAR-10. Our method is much better than other methods on Fashion-MNIST
and CIFAR-10 while it is comparable on MNIST.

Table 4. Classification comparison with zero-shot KDmethods. The results of baselines
are obtained from [39].

Method Model MNIST Fashion-MNIST CIFAR-10

Meta-KD [24] White 92.47% - -

ZSKD [28] White 98.77% 79.62% 69.56%

DAFL [8] White 98.20% - 66.38%

DFKD [38] White 99.08% - 73.91%

ZSDB3KD [39] Black 96.54% 72.31% 59.46%

FS-BBT (Ours) Black 98.91% 86.53% 76.17%

4.7 Ablation study

As there are several components and a hyper-parameter α in our method, we
further conduct some ablation experiments to analyze how each of them affects
to our overall classification accuracy. We select CIFAR-10 for this analysis.

Different types of synthetic images. As described in Section 3.2, we generate
three types of synthetic images to train the student network. First, we generate
mixup images. Second, we sample zN ∼ N (0, I) to generate CVAE images within
the distribution of the original images (we call them CVAE-WD images). Finally,
we sample zU ∼ U([−3, 3]d) to generate CVAE images out-of the distribution of
the original images (we call them CVAE-OOD images).

Figure 3 shows original images and three types of synthetic images for four
true classes “car”, “deer”, “ship”, and “dog”. Our synthetic images have good
quality, where the objects are clearly recognized and visualized. These synthetic
images provide a comprehensive coverage of real images in the test set, resulting
in the great improvement of the student network trained on them.
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3

original mixup CVAE-WD CVAE-OOD

ship

deer

dog

car

Fig. 3. Original images (1st column) and three types of synthetic images: mixup images
(2nd column), CVAE-WD images (3rd column), and CVAE-OOD images (4th column).
The text on the left indicates the true labels of original images.

Table 5 reports the accuracy of various types of our synthetic images. The
standard KD method achieves only 58.96% of accuracy. By utilizing mixup im-
ages, our method achieves up to 71.67% of accuracy. However, using solely mixup
images has disadvantages as we discussed in Section 3.2. By combining mixup
images with CVAE-WD images or CVAE-OOD images, our method further im-
proves its accuracy up to 72.60% and 73.25% of accuracy respectively. Finally,
when combining all three types of synthetic images, our method achieves the
best performance at 74.10% of accuracy.

Table 5. Effectiveness of different types of synthetic images on our method FS-BBT.

KD FS-BBT (Ours)

mixup images X X X X
CVAE-WD images X X X X
CVAE-OOD images X X X X
Accuracy 58.96% 71.67% 70.26% 69.42% 72.60% 73.25% 70.63% 74.10%

The ablation experiments suggest that each type of synthetic images in our
method is meaningful, where it greatly improves the student’s classification per-
formance compared to the standard KD method. By leveraging all three types
of synthetic images, our method improves the generalization and diversity of the
training set, which is very effective for the training of the student network.

Hyper-parameter analysis. Our method FS-BBT has one hyper-parameter,
that is, the threshold α to determine disqualified mixup images and replace them
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by CVAE images (see Section 3.2). We examine how the different choices of α
affect our classification.

0.00 0.02 0.05 0.08 0.10 0.12 0.15
threshold 

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

FS-BBT (Ours)
Standard-KD

Fig. 4. FS-BBT’s accuracy vs. threshold
α on CIFAR-10.

As shown in Figure 4, FS-BBT
is always better than the standard
KD method regardless of α values.
More importantly, it is stable with
α ∈ [0.05, 0.10], where its accuracy
just slightly changes. When α is too
small (i.e. α < 0.05), most of mixup
images will be considered qualified al-
though many of them are very simi-
lar to the original images, leading to
few extra meaningful training samples
added. The performance of FS-BBT
is decreased as expected. When α is
too large (i.e. α > 0.10), FS-BBT
also slightly reduces its accuracy. This

is because many mixup images may become cluttered and semantically meaning-
less due to a large proportion of two original images blended together, making
them difficult for the teacher network to label.

5 Conclusion

Existing standard and few/zero-shot KD methods require lots of original train-
ing data or a white-box teacher, which are not realistic in some cases. We present
FS-BBT – a novel KD method, which is effective even with few training samples
and a black-box teacher. FS-BBT uses MixUp and CVAE to generate synthetic
images to train the student network. Although neither of them is new, combin-
ing them is a novel solution to address the problem of black-box KD with few
samples. As FS-BBT is unsupervised, which does not require any ground-truth
labels, it can be directly applied to domains where labeled images are difficult
to obtain e.g. medical images. We demonstrate the benefits of FS-BBT on five
benchmark image datasets, where it significantly outperforms SOTA baselines.
Our work can cheaply create a white-box proxy of a black-box model, which
allows algorithmic assurance [9,14] to verify its behavior along various aspects
e.g. robustness, fairness, safety, etc.
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