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In this supplementary, we provide some further results including 1.) perfor-
mance with different saliency networks, 2.) comparison with another type of
adaptive networks, 3.) detailed numerical results for the ablation study in the
paper, and 4.) additional figures that visualize the sampling of the SSBNet.

1 Additional Results with Different Saliency Networks

Besides the 1 × 1 convolutional layer utilized for the saliency map estimation
in the main paper, we also conducted additional experiments by increasing the
kernel sizes of the convolutional layers from 1 × 1 to 3 × 3 and 5 × 5. The
experiments were performed with ResNet-D-50/101/152 [2, 3]. However, we did
not notice any performance difference. This may be due to the fact that the
saliency networks take the deep features as their inputs, which have large effective
kernel sizes [6]. As a result, increasing the kernel sizes in the saliency networks
did not lead to any performance improvement.

2 Comparison with Other Adaptive Networks

In the main paper, we referred to adaptive sampling as the methods that perform
geometric samplings or transformations on the images or feature maps, where
the samplings or transformations depend on the inputs. Examples of adaptive
sampling methods include spatial transformer [4] and saliency sampler [7]. There
are also approaches that adaptively skip the inference on individual units, such
as pixels or blocks, to reduce the latency. For example, the stochastic sampling-
interpolation network [10] samples pixels for inference, where the SBNet [8]
selects blocks.

In table 1, we provided preliminary comparison results between SSBNet and
the stochastic sampling-interpolation network [10] (referred to as SSIN for ab-
breviation), a recently proposed adaptive inference network. Following the same
setting as the main paper, we trained SSBNet and SSIN based on ResNet-D-
50 [3] on ImageNet [9]. For SSIN, instead of the standard 120 epochs of training,
we trained the models with 200 epochs, following the original paper which used
a longer training for the adaptive networks. We reported results of SSIN with
loss weight λ of {0.001, 0.005, 0.010, 0.015}.
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Table 1: Comparison to stochastic sampling-interpolation networks

Model FLOPS Top-1(%)

120 Epochs Baseline 4.3G 78.1
SSB 3.0G 78.1

SSIN, λ=0.001 3.9G 76.2
SSIN, λ=0.005 3.4G 75.6
SSIN, λ=0.010 3.2G 75.8
SSIN, λ=0.015 3.0G 75.3

200 Epochs SSIN, λ=0.001 4.1G 77.4
SSIN, λ=0.005 3.7G 76.6
SSIN, λ=0.010 3.3G 75.5
SSIN, λ=0.015 3.0G 73.3

Baseline: ResNet-D-50 [3]
SSB: SSB-ResNet-D-50
SSINI: SSINI [10] + ResNet-D-50 [3]

In our experiments, SSB-ResNet-D-50 achieved better accuracy than SSIN.
Notice that in the SSIN paper, the authors trained ResNet34 for their experi-
ments, where we utilized ResNet-D-50, which is a deeper and improved version
of ResNet [2]. The performance drop of SSIN reported here indicates that it may
not fit the more complicated network and training scheme used in this paper.
Compared to the baseline, the SSB-ResNet-D-50 has no drop in accuracy but
with 30% less FLOPS.

3 Detailed Results of Ablation Studies

In Tables 2 and 3, more detailed results regarding the computation complex-
ity, i.e., FLOPS, and accuracy of models with different sampling methods and
sampling sizes are shown. All results are reported by the average of 3 runs of
SSB-ResNet-D, which is based on ResNet-D [3]. As mentioned in the paper, four
sampling methods are tested: 1) the proposed adaptive sampling in SSBNet, 2)
the uniform sampling with the sampling mechanism in SSBNet (Equation 10
in the paper), 3) the uniform sampling with bilinear interpolation, and 4) the
depthwise convolution for downsampling with bilinear interpolation for upsam-
pling [5].

The results show that the models with adaptive sampling outperform the
ones with uniform sampling on average, where the differences are larger with
RandAugment [1]. With RandAugment, the SSB-ResNet-D-152 with adaptive
sampling and sampling sizes of (16, 8, 4) outperformed all other networks that
have similar complexity by at least 0.4% in accuracy; the SSB-ResNet-D-152
with adaptive sampling and sampling sizes of (12, 6, 3) outperformed the network
with depthwise convolution and bilinear sampling in accuracy, but with 11% less
computation.
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4 More results on Visualization

To further illustrate the capability of SSBNet to focus on different locations of
the feature maps at different layers, we provide additional visualization results
in Figures 1-10. All figures are sampled from the outputs of SSB-ResNet-RS-152
with input size of 224 × 224. The input images are from ImageNet dataset [9].
Each figure provides the samples from one of the selected layers, and each row
in the figures shows the results with different inputs. The figures are annotated
with their index in the network, e.g. Layer 3-5 indicates the fifth layer in the
third group of the building layers.

It can be observed that SSBNet is able to sample different positions at dif-
ferent layers. For example, in Figure 1, the network samples the feature maps
uniformly; in Figure 2, it samples more heavier toward the objects; in Figure
5, the network zooms out from the feature maps, which increases the receptive
field of the convolutional layers with respect to the input feature maps. We also
noticed that the network weights different objects. In Figure 2b, it focuses on
both the people and the dogs in the third feature maps, while in Figure 7b, it
weights the dogs much heavier than the people.
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Table 2: Comparison between uniform and adaptive sampling on ImageNet, with
different sampling size

Model Input size Params FLOPS Top-1(%)

U-50 224 × 224 25.6M 2.61G 77.70
A-50 224 × 224 25.6M 2.61G 77.75

U-101 224 × 224 44.6M 3.35G 78.29
A-101 224 × 224 44.6M 3.35G 78.46

U-152 224 × 224 60.2M 4.13G 78.56
A-152 224 × 224 60.3M 4.14G 78.64

U: Uniform (12, 6, 3)
A: Adaptive (12, 6, 3)

Model Input size Params FLOPS Top-1(%)

U-50 224 × 224 25.6M 2.95G 77.96
A-50 224 × 224 25.6M 2.95G 78.09

U-101 224 × 224 44.6M 4.25G 78.68
A-101 224 × 224 44.6M 4.25G 78.88

U-152 224 × 224 60.2M 5.60G 79.05
A-152 224 × 224 60.3M 5.61G 79.19

U: Uniform (16, 8, 4)
A: Adaptive (16, 8, 4)

Model Input size Params FLOPS Top-1(%)

U-50 224 × 224 25.6M 3.38G 78.01
A-50 224 × 224 25.6M 3.38G 78.12

U-101 224 × 224 44.6M 5.40G 79.01
A-101 224 × 224 44.6M 5.40G 78.99

U-152 224 × 224 60.2M 7.49G 79.42
A-152 224 × 224 60.3M 7.49G 79.45

U: Uniform (20, 10, 5)
A: Adaptive (20, 10, 5)

Model Input size Params FLOPS Top-1(%)

B-50 224 × 224 25.6M 2.95G 77.62
D-50 224 × 224 25.9M 2.74G 77.95

B-101 224 × 224 44.6M 4.25G 78.41
D-101 224 × 224 45.3M 3.69G 78.42

B-152 224 × 224 60.2M 5.61G 78.86
D-152 224 × 224 61.4M 4.65G 78.81

B: Blinear (16, 8, 4)
D: DConv + Bilinear (14, 7, 4)

Table 3: Comparison between uniform and adaptive sampling on ImageNet, with
RandAugment [1]

Model Input size Params FLOPS Top-1(%)

U-50 224 × 224 25.6M 2.61G 77.97
A-50 224 × 224 25.6M 2.61G 77.96

U-101 224 × 224 44.6M 3.35G 78.91
A-101 224 × 224 44.6M 3.35G 79.13

U-152 224 × 224 60.2M 4.13G 79.31
A-152 224 × 224 60.3M 4.14G 79.65

U: Uniform (12, 6, 3)
A: Adaptive (12, 6, 3)

Model Input size Params FLOPS Top-1(%)

U-50 224 × 224 25.6M 2.95G 78.07
A-50 224 × 224 25.6M 2.95G 78.22

U-101 224 × 224 44.6M 4.25G 79.27
A-101 224 × 224 44.6M 4.25G 79.50

U-152 224 × 224 60.2M 5.60G 79.71
A-152 224 × 224 60.3M 5.61G 80.12

U: Uniform (16, 8, 5)
A: Adaptive (16, 8, 4)

Model Input size Params FLOPS Top-1(%)

U-50 224 × 224 25.6M 3.38G 78.37
A-50 224 × 224 25.6M 3.38G 78.36

U-101 224 × 224 44.6M 5.40G 79.41
A-101 224 × 224 44.6M 5.40G 79.88

U-152 224 × 224 60.2M 7.49G 80.19
A-152 224 × 224 60.3M 7.49G 80.28

U: Uniform (20, 10, 5)
A: Adaptive (20, 10, 5)

Model Input size Params FLOPS Top-1(%)

B-50 224 × 224 25.6M 2.95G 77.77
D-50 224 × 224 25.9M 2.74G 78.06

B-101 224 × 224 44.6M 4.25G 79.02
D-101 224 × 224 45.3M 3.69G 79.15

B-152 224 × 224 60.2M 5.61G 79.58
D-152 224 × 224 61.4M 4.65G 79.58

B: Blinear (16, 8, 4)
D: DConv + Bilinear (14, 7, 4)
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(a) Example 1 (b) Example 2

Fig. 1: Layer 2-2

(a) Example 1 (b) Example 2

Fig. 2: Layer 2-7
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(a) Example 1 (b) Example 2

Fig. 3: Layer 3-5

(a) Example 1 (b) Example 2

Fig. 4: Layer 3-10
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(a) Example 1 (b) Example 2

Fig. 5: Layer 3-15

(a) Example 1 (b) Example 2

Fig. 6: Layer 3-20
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(a) Example 1 (b) Example 2

Fig. 7: Layer 3-25

(a) Example 1 (b) Example 2

Fig. 8: Layer 3-30
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(a) Example 1 (b) Example 2

Fig. 9: Layer 3-35

(a) Example 1 (b) Example 2

Fig. 10: Layer 4-3
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