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Abstract. In attention mechanism research, most existing methods are
hard to utilize well the information of the neural network with high com-
puting efficiency due to heavy feature compression in the attention layer.
This paper proposes a simple and general approach named Bridge Atten-
tion to address this issue. As a new idea, BA-Net straightforwardly inte-
grates features from previous layers and effectively promotes information
interchange. Only simple strategies are employed for the model imple-
mentation, similar to the SENet. Moreover, after extensively investigat-
ing the effectiveness of different previous features, we discovered a simple
and exciting insight that bridging all the convolution outputs inside each
block with BN can obtain better attention to enhance the performance of
neural networks. BA-Net is effective, stable, and easy to use. A compre-
hensive evaluation of computer vision tasks demonstrates that the pro-
posed approach achieves better performance than the existing channel at-
tention methods regarding accuracy and computing efficiency. The source
code is available at https://github.com/zhaoy376/Bridge-Attention.

Keywords: Channel attention mechanism, Deep neural networks archi-
tecture, Networks optimization

1 Introduction

Deep convolutional neural networks (CNNs) are widely used in the computer vi-
sion community [31], showing excellent performance on various tasks, e.g., image
classification, object detection, instance segmentation, and semantic segmenta-
tion. Since the appearance of AlexNet [14], numerous researches have dedicated
to boosting the performance of CNNs [7,12,24,27].

In recent years, the attention mechanism has attracted much attention as a
novel technique to enhance performance. It learns attention weights from the
adjacent convolution layer, thus concentrating on more important features. The
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channel attention mechanism is one of the attention mechanisms with the most
representative method, such as squeeze-and-excitation networks (SENet) [11],
which learns the channel attention from an average pooled output on each map,
bringing considerable performance gain in various CNNs. Fig.1 shows the block
architecture of most attention methods, which consists of stacked convolution
layers and one attention layer.
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Fig. 1. The block structure of most existing attention methods. The output, coming
from stacked convolution layers, passes through the attention layer,thus the attention
weights is obtained.

In order to obtain better attention, many methods like [1, 4] attempt to use
sophisticated strategies on the adjacent convolution output while bringing high
model complexity and computation cost. Essentially, attention generation is a
process of heavy feature compression, in which the convolution output converts
to a vector or a map for channel or spatial attention, respectively. So if we want
to get better attention only from a single convolution output, the computational
efficiency has to be sacrificed.

To address this issue, we provide new thinking that utilizes previous features.
From the view of information transfer, the attention also has an implicit cor-
relation to the previous convolution layers since convolution layers are stacked.
Thus bridging previous features can straightforwardly supplement valuable in-
formation for the attention. Moreover, the pieces of information from different
layers are well interchanged in the attention layer. In this way, we propose the
Bridge Attention Net(BA-Net), in which previous features are integrated into
the attention layer via simple strategies similar to the SENet. As a result, its
model complexity regarding the number of parameters, computation cost, and
inference speed is comparable to the SENet. Experimental evaluations on image
classification, object detection, and instance segmentation show that BA-Net
can perform better than existing channel attention methods.

The major contributions of this article can be summarized as follows:

– We analyze the limitation of traditional channel attention mechanisms and
empirically demonstrate that bridging previous features can straightforwardly
supplement efficient information from the view of information transfer.

– We propose the Bridge Attention Net (BA-Net) and implement the basic
module using only simple strategies. Moreover, we extensively investigate
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the effectiveness of different previous features and give out the best BA
module structure.

– Comprehensive experiments on various computer vision tasks are carried
out and show that the proposed BA-Net can achieve higher performance
with low model complexity and fast speed compared with existing channel
attention methods.

2 Related Work

We mainly revisit attention mechanisms and cross-layer interaction applied in
Convolutional Neural Networks(CNNs) in the existing literature.

Attention mechanisms. The attention mechanism is capable of enhancing
the assignment of the most informative feature representations while suppressing
the less useful ones, thus allowing the model to focus on the important regions in
the context adaptively. The pioneering SENet [11] is the cornerstone of the atten-
tion mechanism research field. The method extracted channel-wise features by
simple global average pooling and full connection layers, significantly improving
the performance of many CNNs with few parameters and computing costs added.
The SKNet [16] enhances the expressiveness of the model by passing the feature
map through two convolution layers of different kernel sizes, followed by the ex-
traction of channel attention. While extracting channel attention, BAM [19] and
CBAM [29] utilize the spatial information and generate spatial attention using
convolution. DA-Net Attention [3] concentrates on the relevance of local and
global features and combines the two features by summing the attention mod-
ules of two branches. ResNeSt [32] adopts a similar split-attention block, which
enables the fusion of attention between different groups of the input feature
maps. GSoPNet proposes the global second-order pooling to introduce higher-
order representation to improve the non-linear capability of CNNs. GSoPNet [4]
obtains attention by fully using the second-order statistics of the holistic image.
Fca-Net [20] revisits channel attention using frequency analysis and generalizes
the pre-processing of channel attention mechanism in the frequency domain.
Some methods explore lightweight strategies to reduce the parameters and com-
puting cost of the model with attention. ECA-Net Attention [26] proposes local
cross-channel interaction and generates attention by 1D convolution. SA-Net is
also a lightweight attention structure inspired by channel shuffling. Half of the
features are used to generate spatial attention in SA-Net, and the other half is
used to generate channel attention. At the end of the block, features are shuffled
along the channel. The above mechanisms provide many novel ways to generate
channel or spatial attention. However, one thing in common among them is that
they only focus on the features of the layer adjacent to the attention layer. The
features in previous layers are ignored. In this paper, we will explore the effect
of features in previous layers on the attention mechanism.

Cross-layer integration. It is a common strategy to improve network rep-
resentation by skip connection, which can solve the problem of gradient disper-
sion and the disappearance of deep networks to some extent. This strategy can
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train deep networks more adequately, making deeper network structures fea-
sible, and has been widely used in the design of neural network models. The
ResNet [7]network first proposed a residual module, which facilitates the fusion
of information between different layers. DenseNet [12] also uses a similar struc-
ture but differs from ResNet [7]in the form of concatenating for feature stitching.
In U-Net [22], which is commonly used in the field of medical segmentation, the
decoder-encoder module is connected through a skip connection to make feature
extraction achieve higher accuracy.

Actually, cross-layer integration has been used to improve the performance
of attention mechanisms. Duo L. et al. [15] propose the DREAL method to op-
timize parameters of arbitrary attention modules, in which LSTM [9] is used to
integrate previous attention weights, and deep reinforce learning is used to up-
date parameters of LSTM and attention layers. DIANet [13] also utilizes LSTM
module to integrate previous attention weights and directly outputs attention
weights in current block by LSTM. DIANet visualizes the effect of previous fea-
tures acting on the current attention layer and shows the effect on stabilizing
Training. Yu. W. et al. [28] propose the evolving attention to improve the per-
formance of transformers, named EA-AANet. Attention maps in a preceding
block are integrated with ones in the current layer by residual connection and
2D convolution. Compared to these works, the proposed BA-Net in this paper
has a similar motivation, but this approach integrates the features in previous
layers of the current block. The higher performance of our models is displayed in
Table.2 demonstrates that feature integration of our method is more effective.

3 Approach

In this section, we first revisit traditional channel attention mechanisms(i.e.,
SENet [11]) and give out the common form of the mechanisms. Then we demon-
strate the limitation of the mechanisms through empirical analysis. It inspires
us to come up with the Bridge Attention mechanism, and we will concretely
introduce the implementation of the proposed module.

3.1 Traditional channel attention mechanisms

Revisit SENet. Let the output of the SE block be X ∈ RC×H×W , where C,
H and W are channel, height and width dimension of the output. Accordingly,
the generated attention weights can be computed as:

ω = σ(FC(gap(X))) (1)

where gap(X) = 1
HW

∑H,W
i=1,j=1 Xi,j is channel-wise global average pooling, σ(·)

represents Sigmoid function. FC(·) represents two stacked Full Connection(FC)
layers, which can be expressed as followed:

FC(y) = (W2)ReLU(W1y) (2)
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In Eqn.2, ReLU [18] represents an activation function. W1 and W2 are matrix
used to form the attention weights. The two matrix respectively have size of
C × (Cr ) and (Cr ) × C, in which the reduction factor r is used to avoid heavy
computation and high complexity of the attention layer.

We consider that attention mechanism can be divide into two parts, Inte-
gration and Generation. In SENet, the output X is first squeezed by average
pooling gap(·) and fully integrated among channels by matrix W1, considered
as Integration I(·). And then the features are sequentially fed into RELU ,
matrix W2, σ(·), to get the final attention weights, considered as Generation
G(·). Thus the common form of attention mechanism can be expressed as :

I(·) = W1(gap(·)), G(·) = σ(W2(ReLU(·))) (3)

ω = G(I(X)) (4)

In our method, richer features of previous layers are bridged and integrated into
I(·) beside features of the adjacent layer. Thus better attention is generated.

Limitation. Fig.1 shows the block architecture of most existing attention meth-
ods, which includes the convolution part and an attention layer. Let F(·) and
att(·) represent the convolution part and the attention layer respectively, thus
the whole process can be expressed as:

Fatt(·) = F(·)⊙ att(F(·)) (5)

⊙ represents the element-wise multiplication.
Generally, the convolution part consists of several stacked convolution layers.

We assume that the total number of convolution layers is n, thus:

F(·) = Fn(Fn−1(· · ·F2(F1))) (6)

Fi(·) represents the certain convolution layer, where 1 ≤ i ≤ n.
Considering the distance, we assume that the outputs of F(·) are more im-

plicitly correlated with the previous q layers, thus Eqn.6 can be approximately
equal to:

F(·) ≈ Fn(Fn−1(· · ·Fn−(q−1)(Fn−q)))⇒ F(Fn, Fn−1, . . . , Fn−(q−1), Fn−q) (7)

In most existing attention methods, the attention layer only extracts features
from the adjacent layer Fn(·). Some methods even have complicated calculations
in att(·) for richer information, which weakens the correlation with the previous
q convolution layers:

att(·) = att(Fn(Fn−1(· · ·Fn−(q−1)(Fn−q)))) ≈ att(Fn) (8)

According to Eqn.8, the generated attention weights lack correlation with pre-
vious layers, resulting in insufficient adaptive to outputs of F(·).

In fact, [13] [28] have noticed the above issue, but only the attention weights
of previous blocks are fed into the current attention layer. In our method, features
of the previous layers inside the block are bridged to the current attention layer.
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3.2 Implementation of the BA module

In this part, we concretely introduce how previous features are integrated into
our method and give out the implementation of the Bridge Attention module.
Let the output of Fi(·) inside the block be Xi ∈ RCi×H×W . The outputs are first
global average pooled (gap) to the size of Ci×1×1, and then fed into respective
matrices of size Ci× (Cn

r ) to get the squeezed features Si. The size
Cn

r × 1× 1 is
the same as the squeezed feature from the output of Fn(·), which is followed by
att(·). Thus the squeezed features from different layers are directly added, and
the final integrated feature is obtained.

BA Module
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Fig. 2. The overview of Bridge Attention module. Blue arrows indicate that features
from previous q layers are bridged to the attention layer. FC indicates the matrix to
squeeze features and BN is BatchNorm Layer.

We notice that distributions among the squeezed features can be massive
differences due to the squeezing process, so we apply Batch Normalization for the
features to make them in similar distributions, thus the integration can be more
effective. In addition, Batch Normalization improves the nonlinear representation
of the features, which also benefits network parameters updating. As a whole,
the Integration part can be expressed as:

Si = BNi(Wi(gap(Fi)) (9)

IBA(·) =
n∑

n−q

Si (10)

Then we input the integrated feature into Generation part and get the final
attention weights. The overview of Bridge Attention module is shown in Fig.2.

3.3 The best structure of the BA module

Since there are various previous features that can be bridged to the attention
layer, we investigate their effectiveness to explore the best structure of the BA
module. We evaluate the image classification task based on the backbone of
ResNet-50, and the result is shown in Table.1. The row3 achieves higher accuracy
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than the row2, although they are at the same position. Because the attention
weights are used to rescale the feature maps, compared with the convolution
outputs, they contribute less helpful information to the attention layer. Besides,
bridging the proximate features can achieve better performance. Due to the
heavy feature compression in the attention layer, more proximate features can
straightforwardly supplement more relevant information.

Table 1. The comparison when bridging different features. att: the attention weights,
conv: the convolution outputs, prev: the previous block, curr: the current block, convi:
the i-th convolution layer, end: the end of the block.

Backbone Type Position Param. TOP-1(%)

SE ResNet-50 None — 28.07M 78.14

BA ResNet-50

att
conv
conv
conv
conv
conv

prev, conv3
prev, conv3
prev, end
curr, conv1
curr, conv2

curr, conv1&2

29.16M
29.16M
29.16M
28.39M
28.39M
28.71M

78.41
78.49
78.54
78.78
78.77
78.85

In conclusion, bridging the closer convolution outputs can achieve better
performance. So we merely consider the features within the block, avoiding a
significant increase in configuration complexity. Generally, the blocks of existing
CNNs contain no more than three convolution layers, such as ResNet [7], ResNext
[30], MoblileNetv3 [10], EffcientNet [25], so we bridge all convolution outputs
before the attention layer.

For example, the block of the ResNet-50 contains three convolution layers,
where the number of channels in each output is C, C, and 4C. The BA layer
follows the last layer. Each output is processed by GAP and converted to a
vector of size of 4C

r by FC, where r is always set to 16. Then, the vectors will
be batch normalized and summed. Another FC converts the sum to 4C vector.
The total number of neurons in a BA layer is (C + C + 4C) × 4C

r + 4C × 4C
r ,

besides BN.

4 Experiments

In this section, we evaluate our method on three computer vision tasks, includ-
ing image classification, object detection, and instance segmentation. We first
demonstrate the implementation details of the experiments. Then, we give out
the performance comparison of our method with other attention methods.

4.1 Implementation details

For image classification, we evaluate the performance on ImageNet-1K [23] dataset,
where we apply our method on various backbone architectures, including ResNet
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[7], MobileNet-v3, EfficientNet and ResNeXt. We take the same strategy of
the data augmentation and hyperparameter settings in [7] and [8]. The train-
ing images are cropped randomly to 224×224 with random horizontal flipping,
while the testing images are resized to 256×256 and cropped from the center
to 224×224. We use an SGD optimizer with a momentum of 0.9 and a weight
decay of 1e-4. In the training phase, the initial learning rate is set to 0.1 for a
batch size of 256. All models are trained within 100 epochs with cosine learning
rate decay following FcaNet [20].

For object detection and instance segmentation, we evaluate our method on
the MS COCO2017 dataset [17]. Faster R-CNN [21] and Mask R-CNN [6] are
used as detectors while BA-Net-50 & 101 pretrained on ImageNet-1K are used
as backbone. We used MMDetection toolkit [2] to implement all detectors and
follow the default settings. The shorter side of input images is resized to 800.
All models are optimized using SGD with weight decay of 1e-4, the momentum
of 0.9, and batch size set to 8. The total number of training epochs is 12, and
the initial learning rate is 0.01, decreased by a factor of 10 at the 8th and 11th
epoch, respectively. We construct all models based on the PyTorch framework
and experiment on four Nvidia RTX 3090Ti GPUs.

4.2 Image Classification on ImageNet-1K

Performance comparison with other methods. Firstly, we evaluate our
method under the backbones of ResNet-50&101, which are the most common
backbones used to apply attention mechanisms. Besides traditional channel mech-
anisms like SENet [11], ECA-Net [26], FcaNet [20], we also compare the perfor-
mance with the methods using cross-layer integration, like DREAL [15], DI-
ANet [13] and EA-AANet [28]. We give out the metrics from their origin papers.
In addition, we noticed that different training settings are used in different mech-
anisms in their origin papers, so we retrained part of attention models that is
reproducible, following the setting of FcaNet [20]. Observed in Table.2, BA-
Net has higher performance than other attention mechanisms in org. metrics,
specifically BA-Net, significantly outperforms SENet by 2.14% and 1.41% in org.
TOP-1 under the backbones of ResNet-50 and ResNet-101, respectively. Under
the same training setting, our method also performs better than SENet, ECA-
Net, and FcaNet. Specifically, BA-Net outperforms SENet by 0.71% and 0.62%
in self. TOP-1 under the two backbones, respectively.

Computing cost. Observed in Table.2, parameters of BA-Net are slightly
larger than parameters of SENet since the features of previous layers are bridged
to the attention layer, while FLOPs of them are almost the same. To further
illustrate the computation cost of BA-Net, we make additional comparisons on
graphics memory usage and speed when training and testing. In Table.3, memory
usage when training and testing are slightly increased while training speed and
testing speed are slightly decreased. With comparable computing costs, BA-Net
outperforms SENet by 0.71% and 0.62% under the two backbones.
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Table 2. Performance comparisons of different attention methods on ImageNet-1K in
terms of network parameters(Param.), floating point operations per second (FLOPs),
and Top-1/Top-5 accuracy. The term self. means that the metrics came from the
experiments retrained by ourselves while org. means that the metrics came from the
original paper. Our method and the best records are marked in bold.

Attention Method Backbone Param. FLOPs
TOP-1(%)

self. | org.

TOP-5(%)

self. | org.

SENet
ECA-Net
FcaNet
SENet+DREAL
DIANet
EA-AANet
BA-Net(ours)

ResNet-50

28.07M
25.56M
28.07M
28.12M
28.36M
25.80M
28.71M

4.13G
4.13G
4.13G
4.13G
4.13G
4.35G
4.13G

78.14 | 76.71
77.98 | 77.43
78.57 | 78.52
— | 77.85

78.31 | 77.24
— | 78.22
78.85

94.05 | 93.38
93.94 | 93.65
94.16 | 94.14
— | 94.05

94.08 | —
— | 94.21
94.28

SENet
ECA-Net
FcaNet
SENet+DREAL
DIANet
EA-AANet
BA-Net(ours)

ResNet-101

49.29M
44.55M
49.29M
49.36M
47.35M
45.40M
50.49M

7.86G
7.87G
7.86G
7.87G
7.86G
8.60G
7.87G

79.41 | 77.62
79.23 | 78.65
79.63 | 79.64
— | 79.27

79.47 | —
— | 79.29
80.03

94.62 | 93.93
94.45 | 94.34
94.66 | 94.63
— | 94.59

94.66 | —
— | 94.81
94.83

Table 3. Computing cost comparisons of BA-Net and SENet in temrs of memory usage
and speed(frame per second, FPS) when train and test. M. represents memory usage
and S. represents speed.

Method Backbone Train M. Train S. Test M. Test S. TOP-1(%)

SENet
BA-Net(Ours)

ResNet-50
34.74G
34.85G

656 FPS
612 FPS

7.49G
7.67G

1315 FPS
1280 FPS

78.14
78.85

SENet
BA-Net(Ours)

ResNet-101
46.86G
47.54G

397 FPS
362 FPS

8.96G
9.26G

845 FPS
792 FPS

79.41
80.03

Table 4. Performance comparisons of BA-Net application on different backbone ar-
chitectures. The backbones with Bridge Attention and the best records are marked in
bold.

BackBone Type Param. TOP-1(%) TOP-5(%)

ResNeXt-50
Origin
+BA

25.05M
28.85M

78.77
79.58

94.18
94.69

EfficientNet-b0
Origin
+BA

5.29M
8.42M

70.11
71.70

89.45
90.21

MobileNetv3-small
Origin
+BA

2.54M
2.79M

65.87
65.85

86.26
86.48

MobileNetv3-large
Origin
+BA

5.48M
6.03M

73.29
73.50

91.18
91.22
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Application on other backbones. To further verify the capability of Bridge
Attention on other backbone architectures, we apply our method on ResNext,
EfficientNet, and MobileNetv3. We retrained all the original backbones while
the types with Bridge Attention added, comparisons are shown in Table.4. For
ResNeXt-50, BA improves the model by 1.19% on TOP-1 and 0.51% on TOP-5.
EfficientNet-b0 with BA significantly outperforms the origin model by 1.59% and
0.76% on TOP-1 and TOP-5, respectively. However, Bridge Attention seems to
have little effect on light-weight backbone like MoblileNetv3, with only a 0.21%
improvement on TOP-1 of the large type. So we consider that BA can help
improve performance more significantly on heavy backbone architectures.

4.3 Object detection on COCO2017

In this subsection, we evaluate our BA-Net on object detection tasks using Fast
R-CNN and Mask R-CNN. We mainly compare BA-Net with ResNet, SENet,
ECA-Net, and FcaNet. We transferred our BA-Net models on the COCO2017
training set and gave out the metrics tested on the validation set. As shown
in Table.5, most metrics of BA-Net achieve the highest performance. For Fast
R-CNN, our BA-Net outperforms SENet by 1.8% and 2.1% in terms of mAP
with the backbones ResNet-50 and ResNet-101, respectively. For Mask R-CNN,
our BA-Net outperforms SENet by 2.1% in terms of mAP with ResNet-50.

Table 5. Performance comparisons of different attention methods on obeject detection
task. Average Precision(AP ) is the main comparison metric.

Backbone Detector Param. FLOPs mAP AP50 AP75 APS APM APL

ResNet-50
SENet
ECA-Net
FcaNet
BA-Net

ResNet-101
SENet
ECA-Net
FcaNet
BA-Net

Faster-RCNN

41.53M
44.02M
41.53M
44.02M
44.66M

60.52M
65.24M
60.52M
65.24M
66.44M

215.51G
215.63G
215.63G
215.63G
215.68G

295.39G
295.58G
295.58G
295.58G
295.70G

36.4
37.7
38.0
39.0
39.5

38.7
39.6
40.3
41.2
41.7

58.2
60.1
60.6
61.1
61.3

60.6
62.0
62.9
63.3
63.4

39.2
40.9
40.9
42.3
43.0

41.9
43.1
44.0
44.6
45.1

21.8
22.9
23.4
23.7
24.5

22.7
23.7
24.5
23.8
24.9

40.0
41.9
42.1
42.8
43.2

43.2
44.0
44.7
45.2
45.8

46.2
48.2
48.0
49.6
50.6

50.4
51.4
51.3
53.1
54.0

ResNet-50
SENet
ECA-Net
FcaNet
BA-Net

Mask-RCNN

44.17M
46.66M
44.17M
46.66M
47.30M

261.81G
261.93G
261.93G
261.93G
261.98G

37.2
38.4
39.0
40.3
40.5

58.9
60.9
61.3
62.0
61.7

40.3
42.1
42.1
44.1
44.2

22.2
23.4
24.2
25.2
24.5

40.7
42.7
42.8
43.9
44.3

48.0
50.0
49.9
52.0
52.1

4.4 Instance segmentation on COCO2017

For instance segmentation task, we take Mask R-CNN as the detector for eval-
uation and the result is shown in Table.6. mAP of BA-Net achieved 36.6% and
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38.1% under the two backbones, which performs better than other attention
methods. Compared with SENet, our BA-Net notably outperformed by 1.2%
and 1.3% in terms of mAP , respectively. Besides image classification, BA-Net
also performs well on object detection and instance segmentation tasks, which
verifies that our BA-Net has good generalization ability for various tasks.

Table 6. Performance comparisons of different attention methods on instance segmen-
tation task.

Backbone mAP AP50 AP75 APS APM APL

ResNet-50
SENet
ECA-Net
FcaNet
BA-Net

ResNet-101
SENet
ECA-Net
BA-Net

34.2
35.4
35.6
36.2
36.6

35.9
36.8
37.4
38.1

55.9
57.4
58.1
58.6
58.7

57.7
59.3
59.9
60.6

36.2
37.8
37.7
38.1
38.6

38.4
39.2
39.8
40.4

16.1
17.1
17.6
—

18.2

16.8
17.2
18.1
18.7

37.5
38.6
39.0
—

39.6

39.7
40.3
41.1
41.5

46.3
51.8
51.8
—

52.3

49.7
53.6
54.1
54.8

5 Analysis

5.1 Effectiveness of Bridge Attention

To further analyze how Bridge Attention affects the feature map, we visualize the
attention weights distribution of BA-Net and compare it with SENet. Concretely,
we randomly sample four classes from ImageNet, which are American chameleon,
castle, paintbrush, and a prayer mat, respectively. All images of each class are
collected from the validation set of ImageNet, and some example images are
shown in Figure 3.

Fig. 3. Example images of four classes from ImageNet. The images from left to right
are American chameleon, castle, paintbrush and prayer mat, respectively.
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Fig. 4. Visualization of channel attention weights of Block-ij , where i indicate the i-th
stage and j is j-th block in i-th stage. The weights learned by SENet50 blocks and
BA-Net50 are illustrated in top and bottom row, respectively.

We put the images of the same class into the pretrained BA-Net-50 and
SENet-50, then compute the channel attention weights of convolution blocks on
average. Figure 4 visualizes the attention weights of four blocks, and each is the
last block of four stages. The attention weights of SE blocks are illustrated in
the top row, while BA blocks’ are illustrated in the bottom row.

In the first stage, the weights distributions of both models are similar, show-
ing that enhancement from Bridge Attention is not significant for coarse feature
extraction. Nevertheless, in the later stages for detailed feature extraction, the
variance of the weight distribution in BA-Net increases significantly, indicating
that the weights become more diverse, especially in the third stage. It demon-
strates that BA-Net can effectively capture the more essential features while
filtering out the less important ones, thus enhancing the representation of the
feature maps. In addition, the SENet’s weights curves of different classes in the
first three stages almost overlap, while the BA-Net’s curves of different classes
are clearly distinguishable on some channels. This indicates that BA-Net can
distinguish detailed features of different classes sharply. In general, the bridged
features of previous convolution layers effectively enhance the representation
ability of the output feature maps.

5.2 Importance of the integrated features

In our method, the features of different convolution layers in the block are inte-
grated into the attention layer, so we want to explore the relationship between
the integrated features and the attention weights and how the features con-
tribute to the attention weights. We consider using the random forest model to
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reveal the relationship and take the Gini importance [5] from the model as the
measurement of feature importance.

The calculating process is referred to as Algorithm 1. There are 16 blocks
in the BA-Net-50, where each block contains three convolution layers, and the
attention layer follows the third layer. We also use the validation set of ImageNet
to inference in the model, and then we get the squeezed features Si and atten-
tion weights ωi in each block. We fit a random forest model for each block using
its Si and ωi, and then visualize the feature importance as shown in Fig.5. We
notice that not all S3 contribute the most to the attention weights, which are ad-
jacent to the attention layer. For example, the contribution of S2 is comparable
to S3 in B12, or even the integrated features from previous convolution layers
are more than important S3, such as B11, B16. The results demonstrate that
the features from previous convolution layers also effectively contribute to the
attention weight and even play a dominant role among the integrated features
in a particular block.

Algorithm 1: Calculate importance of the squeezed features

Data:
Si: consisting of Si

1, S
i
2, S

i
3, indicating all squeezed features in block i;

#The size of Si is (b× ci × 3), b: training samples, ci: channels of Si

ωi: Channel attention weights in block i;
N : the number of blocks in BA-Net50 backbone;
Result:
The hotmap G about importance of squeezed features in block i;
initialization G = ∅;
for i = 1 to N do

x←− [Si
1, S

i
2, S

i
3];

x←− x.reshape(b, (ci × 3));
y ←− ωi;
Model ←− RandomForestRegressor();
Model.fit(x, y)
Importances ←− Model.feature importances ;
# The length of Importances is (ci × 3) ;
res = ∅; s = 0; cnt = 0 ;
for k = 0 to (ci × 3) do

s←− s + Importances(k);
cnt←− cnt+ 1;
if cnt = ci − 1 then

res.add(s);
s←− 0;
cnt←− 0;

end

end
G.add(res/max(res));

end
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Fig. 5. Visualization of Gini importance of the integrated features. Bi indicates the
i-th block in BA-Net50 model and Si is i-th squeezed feature in a certain block. The
deeper the color of the square, the more important it is.

6 Conclusion

Traditional channel attention mechanisms heavily rely on the output of the ad-
jacent convolution layer. Faced with this limitation, this paper proposes a novel
idea named Bridge Attention to enrich the information for better channel weight
estimation. We design the Bridge Attention Module with simple strategies by in-
tegrating the features from multiple layers. Experimental evaluation shows that
the BA-Net achieves significant performance on various computer vision tasks.
Moreover, we verify the features from multiple layers also effectively contribute
to the attention weights. In future work, we will consider extending the Bridge
Attention by exploring feature integration from the previous block, thus further
improving the neural network’s performance.

7 Acknowledgement

This work was partially supported by the Shenzhen Fundamental Research
Program (No. JCYJ20200109142217397), Guangdong Natural Science Founda-
tion (No. 2021A1515011794, and 2021B1515120032), Shenzhen Key Science and
Technology Program (No. JSGG20210802153412036), and National Natural Sci-
ence Foundation of China (No.52172350).

References

1. Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convo-
lutional networks. In: Proceedings of the IEEE/CVF international conference on
computer vision. pp. 3286–3295 (2019)

2. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu,
Z., Xu, J., et al.: Mmdetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155 (2019)

3. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for
scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 3146–3154 (2019)



BA-Net: Bridge Attention for Deep Convolutional Neural Networks 15

4. Gao, Z., Xie, J., Wang, Q., Li, P.: Global second-order pooling convolutional net-
works. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 3024–3033 (2019)

5. Gregorutti, B., Michel, B., Saint-Pierre, P.: Correlation and variable importance
in random forests. Statistics and Computing 27(3), 659–678 (2017)

6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

8. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image clas-
sification with convolutional neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 558–567 (2019)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

10. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 1314–1324
(2019)

11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132–7141 (2018)

12. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4700–4708 (2017)

13. Huang, Z., Liang, S., Liang, M., Yang, H.: Dianet: Dense-and-implicit attention
network. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34,
pp. 4206–4214 (2020)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25,
1097–1105 (2012)

15. Li, D., Chen, Q.: Deep reinforced attention learning for quality-aware visual recog-
nition. In: European Conference on Computer Vision. pp. 493–509. Springer (2020)

16. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
510–519 (2019)

17. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

18. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Icml (2010)

19. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: Bottleneck attention module. arXiv
preprint arXiv:1807.06514 (2018)

20. Qin, Z., Zhang, P., Wu, F., Li, X.: Fcanet: Frequency channel attention networks.
arXiv preprint arXiv:2012.11879 (2020)

21. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object de-
tection with region proposal networks. IEEE transactions on pattern analysis and
machine intelligence 39(6), 1137–1149 (2016)

22. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)



16 Y. Zhao, J. Chen, et al.

23. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115(3), 211–252 (2015)

24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

25. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. pp. 6105–6114. PMLR
(2019)

26. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: efficient channel
attention for deep convolutional neural networks, 2020 ieee. In: CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE (2020)

27. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
7794–7803 (2018)

28. Wang, Y., Yang, Y., Bai, J., Zhang, M., Bai, J., Yu, J., Zhang, C., Huang, G., Tong,
Y.: Evolving attention with residual convolutions. arXiv preprint arXiv:2102.12895
(2021)

29. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention
module. In: Proceedings of the European conference on computer vision (ECCV).
pp. 3–19 (2018)

30. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1492–1500 (2017)

31. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
Bengio, Y.: Show, attend and tell: Neural image caption generation with visual
attention. In: International conference on machine learning. pp. 2048–2057. PMLR
(2015)

32. Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T.,
Mueller, J., Manmatha, R., et al.: Resnest: Split-attention networks. arXiv preprint
arXiv:2004.08955 (2020)


	BA-Net: Bridge Attention for Deep Convolutional Neural Networks

