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1 Supplementary Introduction

In this supplementary document, we first perform a convergence analysis of
federated learning under the proposed federated hyperparameter optimization
framework (Sec. 2.1) and then provide details of the network architectures used
for our classification (Sec. 2.2) and segmentation experiments. Finally, we analyze
the learning process for the pancreas segmentation task (Sec. 3.1).

2 Supplementary Method

2.1 Convergence Analysis

In Eq. 1 of main manuscript, we define the FL optimization problem as follows:

min
x∈Rd

1

m

m∑
i=1

Li(x),

where m is the number of clients and Li(x) = Ez∼Di
[fi(x, z)] is the loss function

of the ith client. z ∈ Z, and Di represents the data distribution of the ith client.
Following the proof originally proposed in adaptive federated optimization [6],
we have the unbiased stochastic gradient gi(x) and the client’s true gradient
∇Li(x). Then we make the following three common assumptions:

⋆ Work done during an internship at NVIDIA.
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Assumption 1 (Lipschitz Gradient):

||∇Li(x)−∇Li(y)|| ≤ L||x− y||,∀x, y ∈ Rd

Assumption 2 (Bounded Global Variance):

(
1

m
)

m∑
i=1

||∇[Li(x)]j − [∇f(x)]j ||2 ≤ σ2
g,j ,

∀x ∈ Rd and j ∈ [d]

Assumption 3 (Bounded Gradients):

For any i ∈ [m], x ∈ Rd and z ∈ Z,

We have |[∇fi(x, z)]j | ≤ G,∀j ∈ [d]

As discussed in [6], the three assumptions are widely adopted in the non-convex
optimization [7,8,5] and federated learning literature [4,10]. For the illustration
purpose, we assume the server optimizer is the commonly used Adam optimizer.
Let σ2 = σ2

l + 6Kσ2
g , where σ2

l =
∑d

j=1 σ
2
l,j and σ2

g =
∑d

j=1 σ
2
g,j . Suppose the

client learning γl is bounded by the search space and satisfies γl ≤ 1
16LK and

γl ≤
1

6K
min

{[ α

GL

]1/2
,
[ α2

GL3γ

]1/4
,
[ α

GL2

]1/3}
,

where α controls the algorithms’ degree of adaptivity. To highlight the depen-
dency of K (the number of clients) and Q (the number of rounds) for the con-
vergence rate, we can assume γl, γ and α are specifically chosen as follows:

γl = Θ(
1

KL
√
Q
),

γ = Θ(
√
KM),

α =
G

L
.

Based on the proof of FedAdam [6], when Q is sufficiently large, the proposed
methods satisfies:

min
0≤q≤Q−1

E||∇f(xq)||2 = O
(
f(x0)− f(x⋆)√

mKQ
+

2σ2
l L

G2
√
mKQ

+
σ2

GKQ
+

σ2L
√
m

G2
√
KQ3/2

)
.

Hence, when Q ≫ K, the proposed method can achieve a convergence rate of
O( 1√

mKQ
) under the adaptive federated optimization framework. Readers are

referred to [6] for a complete convergence analysis of the adaptive federated
optimization.
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Fig. 1. Analysis of the learning process of Auto-FedRL(css) in Pancreas CT segmen-
tation. (a) The parallel plot of the hyperparameter change during the training. LR,
LI, AW, and SLR demotes the learning rate, local iterations, aggregation weights, and
the server learning rate, respectively. (b) The importance analysis of different hyper-
parameters.

Table 1. Configuration of 3D Unet

Network Block In Channel Out Channel

Encoder

ConvBlock 1 16
ResConvBlockWD 16 32

ResConvBlock 32 32
ResConvBlockD 32 64
ResConvBlock 64 64

ResConvBlockWD 64 128
ResConvBlock 128 128

ResConvBlockWD 128 256
ResConvBlock 256 256

Decoder

UpBlock 256 128
UpBlock 128 64
UpBlock 64 32
UpBlock 32 16
Conv3d 16 1

2.2 Network Architectures

We use a 3D U-Net [2] style encoder-decoder architecture for the segmenta-
tion networks. The encoder and decoder networks can be described as shown in
Table 1, where ResConvBlockWD represents a 3D ResConvBlock with down-
sampling layer and network modules are expressed by (in-channel, out-channel).
Table 2 shows the details of each block in our segmentation network. The VGG-
9 [9] architecture used for CIFAR-10 experiments is presented in Table 3. For the
Auto-FedRL(MLP), due to our online setting, we have to keep the learnable pa-
rameters in networks small but effective. The MLP can be described as following:
Liner(in-chanel, 256)-ReLu(256)-Liner(256, 256)-ReLu(256)-Liner(256,in-chanel),
where in-chanel is decided by the size of mean vector µ and the covariance matrix
Σ.

3 Supplementary Results

3.1 Learning Process for Pancreas Segmentation

Figure 1 presents the learning process of our best performing model in the pan-
creas segmentation task. As shown in Fig. 1(a), while in this task the number
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Table 2. Configuration of Blocks in 3D Unet

Block Layer Kernel size Stride Padding

ConvBlock
Conv3D 3 2 1

InstanceNorm - - -
ReLu - - -

ResConvBlock
Conv3D 3 1 1

InstanceNorm - - -
ReLu - - -

ResConvBlockD

Conv3D 3 2 1
InstanceNorm - - -

ReLu - - -
Conv3D 1 2 0

UpSample

Conv3D 3 1 1
InstanceNorm - - -

ReLu - - -
Interpolate - - -

Table 3. Configuration of VGG-9

Block Layer In Channel Out Channel Kernel size Stride Padding

ConvBlock1

Conv2D 3 32 3 1 1
ReLu 32 32 - - -

Conv2D 32 64 3 1 1
ReLu 64 64 - - -

MaxPool2d 64 64 2 2 0

ConvBlock2

Conv2D 64 128 3 1 1
ReLu 128 128 - - -

Conv2D 128 128 3 1 1
ReLu 128 128 - - -

MaxPool2d 128 128 2 2 0
Dropout2d - - - - -

ConvBlock3

Conv2D 128 256 3 1 1
ReLu 256 256 - - -

Conv2D 256 256 3 1 1
ReLu 256 256 - - -

MaxPool2d 256 256 2 2 0

FC

Dropout - - - - -
Linear 4096 512 - - -
ReLU 512 512 - - -
Linear 512 512 - - -
ReLU 512 512 - - -

Dropout 512 512 - - -
Linear 512 10 - - -

Table 4. The additional computational details of different search strategies under the
same setting on CIFAR-10.

Search Space Type Accuracy Memory Usage Running Time for Search C3-Score [1]

Discrete 90.70 42.8 GB 8.246 s 0.778
Continuous 90.85 3.00 GB 0.012 s 0.799
Continuous MLP 91.27 3.13 GB 0.019 s 0.803

of optimization steps is quite limited (i.e., 50), we still can observe that the RL
agent is able to naturally form the training scheduler for each hyperparameter
(e.g ., the learning rate for clients and the server). Similar as the analysis of
COVID-19 lesions segmentation, we use FANOVA [3] to assess the hyperparam-
eter importance. As shown in Fig .1(b), LR, AW2, and LI rank as top-3 most
important hyperparameters, which implies that including aggregation weights
into search space is also important in our setting.



Auto-FedRL: Federated Hyperparameter Optimization 5

References

1. Chopra, A., et al.: Adasplit: Adaptive trade-offs for resource-constrained dis-
tributed deep learning. arXiv preprint arXiv:2112.01637 (2021)
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