
Appendix for UniMiss

Yutong Xie1[0000−0002−6644−1250], Jianpeng Zhang2, Yong Xia2, and Qi Wu1⋆

1 The University of Adelaide, Australia
2 School of Computer Science and Engineering, Northwestern Polytechnical

University, China
yutong.xie678@gmail.com;qi.wu01@adelaide.edu.au

1 Overview

In this document, we provide more discussions and experimental details to sup-
plement the main submission. We first continue to discuss the necessity of switch-
able patch embedding (SPE) module (Section 2). We then give more details
for the downstream tasks, including the implementation details and architec-
tures (Section 3). Finally, we provide an intuitive explanation of the proposed
volume-slice consistency mechanism (Section 4).

2 Necessity of SPE (Cont.)

To further explain the necessity of the SPE module, we compared the pyramid
U-like medical Transformer (MiT) to two variants without a SPE module. For
the variant 1, we directly flatten the 2D/3D images to a sequence based on the
pixels/voxels level and then use a linear layer for the embedding. Such a crude
flattening operation suffers the very high computation complexity and memory
requirements, especially for 3D images. Thus, it is hard to perform the variant 1
for quantitative comparisons. For the variant 2, we perform a naive embedding
strategy to reduce the complexity. We first down-sample (for encoder)/up-sample
(for decoder) the 2D/3D images by using a parameter free interpolation, then
flatten them into a sequence based on the pixels/voxels level, and finally use a
linear layer for both 2D and 3D embedding. The results in Table 1 show that MiT
with the SPE module is significantly superior to the naive embedding strategy
(i.e. variant 2) whenever with or without using the pre-training. It suggests
that our SPE is better than the parameter-free interpolation and linear layer.
The reason may be that the strided convolution with a large kernel is able to
model the local continuity of 2D/3D images, which cannot be implemented by
the linear layer.

3 Downstream Tasks

3.1 Implementation Details

In Table 2, we provide the implementation details of six downstream datasets,
including the task type, modality, number of training and test cases, loss func-

⋆ Corresponding author.

2 Y. Xie et al.

Table 1. Segmentation performance of MiT and its two variants without a SPE module
on BCV offline test set (3D CT).

Methods SPE Dice

Random initialization
Variant 1 No unaffordable

Variant 2 No 73.31

Ours Yes 79.93

UniMiSS pre-training
Variant 1 No unaffordable

Variant 2 No 76.65

Ours Yes 84.99

Table 2. Implementation details of downstream tasks. Seg: Segmentation; Cls: Clas-
sification; CE: Cross-entropy loss; off: offline test set; on: online test set.

Dataset BCV RICORD JSRT ChestXR CHAOS ISIC

Task Seg Cls Seg Cls Seg Seg

Modality 3D CT 3D CT 2D X-ray 2D X-ray 3D MRI 2D Dermoscopic

Training data 24 182 124 17,955 16 2000

Test data 6 (off)+20 (on) 45 123 3,430 4 600

Loss Dice+CE [4] CE Dice+CE CE Dice+CE [4] Hybrid loss [6]

Patch size 48 × 1922 64 × 1282 2242 2242 48 × 192 × 256 2242

Augmentation ✓ ✓ ✓ ✓ ✓ ✓

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW

Learning rate 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001

Batch size 2 8 32 32 2 16

Iterations 25,000 14,000 10,000 17,000 50,000 37,500

tion, patch size, batch size, optimizer, learning rate, and maximum iterations.
Note that we randomly split 25% training scans as a validation set to select the
hyper-parameters of UniMiSS in the ablation study. We use the online data aug-
mentation to alleviate the over-fitting of UniMiSS on training data. We augment
2D images via random cropping and zooming, random rotation, shear, shift, and
horizontal/vertical flip. As for 3D images, we perform random rotation, scaling,
flipping, adding white Gaussian noise, Gaussian blurring, adjusting rightness
and contrast, simulation of low resolution, and Gamma transformation [4]. All
the downstream experiments were performed on a NVIDIA GTX 2080Ti GPU.

3.2 Architectures of MiT and ResUnet

Figure 1 shows the detailed settings of the MiT network. The MiT encoder fol-
lows a progressive shrinking pyramid Transformer, as done in [5]. It consists
explicitly of four stages, each of which is composed of a SPE module and several
stacked Transformers. In each stage, the SPE module down-samples the input
features and generates the dimension-specific embedded sequence. Notably, we
append an extra learnable SSL token [1,2] to the patch embedded sequence.
The SSL token is similar to the [CLS] token in ViT, which is able to aggre-
gate information from the whole patch embedding tokens via the self-attention.
The resultant sequences, combined with the learnable positional embedding, are
inputted into the following Transformers for the long-term dependency model-

Universal Medical Self-Supervised Learning 3

ing. Each Transformer layer includes a self-attention module and a feed-forward
network (FFN) with two hidden layers. To reduce the computational cost and
enable MiT to process high-resolution images, we follow the spatial-reduction
attention (SRA) layer to reduce the spatial complexity [5]. MiT has a symmetric
decoder structure that consists of three stages. In each stage, the input feature
map is first up-sampled by the SPE module, and then refined by the stacked
Transformer layers. Besides, we also add skip connections between the encoder
and decoder to keep more low-level but high-resolution information. We devise
two MiT by changing the number of Transformer layers, namely MiT-7 and MiT-
22. Noticed that default MiT-22 is used in the main submission unless otherwise
specified.

Figure 2 shows the architecture of CNN-based ResUnet, used by the com-
pared PCRL [7]. It consists of a 2D/3D ResNet-50 [3] encoder, a decoder, and
four skip connections between encoder and decoder. The decoder contains five
up-sampling modules. Each of the first four modules has a transposed convo-
lutional (TransConv) layer followed by a convolution block (ConvBlock) and a
pixel-wise summation with the corresponding feature maps from the encoder and
the TransConv layer. The last module comprises an Up-sampling layer followed
by a 1 × 1 Conv layer that maps each 32-channel feature map to the desired
number of classes.

4 Volume-slice consistency mechanism

Figure 3 gives an intuitive explanation of the proposed volume-slice consistency
mechanism. Given a 3D volumetric image, we first create two augmented views
via data augmentation, each of which has m 2D slices. We then compute the
volumetric or slice representations of dual paths, i.e. fVolume

1 , fVolume
2 , fSlices

1 ,
and fSlices

2 . Here the slice representations fSlices
1 and fSlices

2 are generated by
averaging the outputs of m slices. The loss function is composed of four items,
including LVolume, LSlices, LVolume→Slices, and LSlices→Volume. The first two items
aim to achieve the consistency at the level of global volume and local slices,
respectively. Besides, the consistency across both levels should also be satisfied,
which is achieved by the latter two items. By jointly using these four loss items,
our model is able to capture richer representations from 3D medical images.

References

1. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.:
Emerging properties in self-supervised vision transformers. In: ICCV (2021) 2

2. Chen*, X., Xie*, S., He, K.: An empirical study of training self-supervised vision
transformers. In: ICCV (2021) 2

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016) 3, 5

4 Y. Xie et al.

Layer_name MiT-7 MiT-22 Output Size

Encoder

SPE

2D 3D 2D 3D 2D 3D
Kernel: 7×7
Channel: 32

Stride: 2

Kernel: 7×7×7
Channel: 32

Stride: (1, 2, 2)

Kernel: 7×7
Channel: 32

Stride: 2

Kernel: 7×7×7
Channel: 32

Stride: (1, 2, 2)

!
"
× #

"
D × !

"
× #

"

Stage 1

SPE

2D 3D 2D 3D 2D 3D
Kernel: 3×3
Channel: 48

Stride: 2

Kernel: 3×3×3
Channel: 48

Stride: 2

Kernel: 3×3
Channel: 48

Stride: 2

Kernel: 3×3×3
Channel: 48

Stride: 2

!
$
× #

$
%
"

× !
$

× #
$

Transformer
Layers

R = 6
H = 1 ×1
E = 4

R = 6
H = 1 ×2
E = 4

!
$
× #

$
+ 1 %

"
× !

$
× #

$
+ 1

Stage 2

SPE

2D 3D 2D 3D 2D 3D
Kernel: 3×3

Channel: 128
Stride: 2

Kernel: 3×3×3
Channel: 128

Stride: 2

Kernel: 3×3
Channel: 128

Stride: 2

Kernel: 3×3×3
Channel: 128

Stride: 2

!
&
× #

&
%
$

× !
&

× #
&

Transformer
Layers

R = 4
H = 2 ×1
E = 4

R = 4
H = 2 ×3
E = 4

!
&
× #

&
+ 1 %

$
× !

&
× #

&
+ 1

Stage 3

SPE

2D 3D 2D 3D 2D 3D
Kernel: 3×3

Channel: 256
Stride: 2

Kernel: 3×3×3
Channel: 256

Stride: 2

Kernel: 3×3
Channel: 256

Stride: 2

Kernel: 3×3×3
Channel: 256

Stride: 2

!
'(
× #
'(

%
&

× !
'(

× #
'(

Transformer
Layers

R = 2
H = 4 ×1
E = 4

R = 2
H = 4 ×4
E = 4

!
'(
× #
'(

+ 1
%
&
× !
'(
× #
'(

+
1

Stage 4

SPE

2D 3D 2D 3D 2D 3D
Kernel: 3×3

Channel: 512
Stride: 2

Kernel: 3×3×3
Channel: 512

Stride: 2

Kernel: 3×3
Channel: 512

Stride: 2

Kernel: 3×3×3
Channel: 512

Stride: 2

!
)"
× #
)"

%
'(

× !
)"

× #
)"

Transformer
Layers

R = 1
H = 8 ×1
E = 4

R = 1
H = 8 ×3
E = 4

!
)"
× #
)"

+ 1
%
'(
× !
)"
× #
)"

+
1

Decoder

Stage 1

SPE

2D 3D 2D 3D 2D 3D
Kernel: 2×2

Channel: 256
Stride: 2

Kernel: 2×2×2
Channel: 256

Stride: 2

Kernel: 2×2
Channel: 256

Stride: 2

Kernel: 2×2×2
Channel: 256

Stride: 2

!
'(
× #
'(

%
&

× !
'(

× #
'(

Transformer
Layers

R = 2
H = 8 ×1
E = 4

R = 2
H = 8 ×3
E = 4

!
'(
× #
'(

+ 1
%
&
× !
'(
× #
'(

+
1

Stage 2

SPE

2D 3D 2D 3D 2D 3D
Kernel: 2×2

Channel: 128
Stride: 2

Kernel: 2×2×2
Channel: 128

Stride: 2

Kernel: 2×2
Channel: 128

Stride: 2

Kernel: 2×2×2
Channel: 128

Stride: 2

!
&
× #

&
%
$

× !
&

× #
&

Transformer
Layers

R = 4
H = 4 ×1
E = 4

R = 4
H = 4 ×4
E = 4

!
&
× #

&
+ 1 %

$
× !

&
× #

&
+ 1

Stage 3

SPE

2D 3D 2D 3D 2D 3D
Kernel: 2×2
Channel: 48

Stride: 2

Kernel: 2×2×2
Channel: 48

Stride: 2

Kernel: 2×2
Channel: 48

Stride: 2

Kernel: 2×2×2
Channel: 48

Stride: 2

!
$
× #

$
%
"

× !
$

× #
$

Transformer
Layers

R = 6
H = 2 ×1
E = 4

R = 6
H = 2 ×3
E = 4

!
$
× #

$
+ 1 %

"
× !

$
× #

$
+ 1

Fig. 1. Detailed settings of MiT network. Here, ‘R’: reduction ratio of SRA; ‘H’: head
number of SRA; and ‘E’: expansion ratio of FFN

4. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-
configuring method for deep learning-based biomedical image segmentation. Nature
methods 18(2), 203–211 (2021) 2

Universal Medical Self-Supervised Learning 5

Res50Unet

ConvBlock

✕ 3ResBlock

ResNet 50

Maxpooling

Stage1

✕ 4ResBlockStage2

✕ 6ResBlockStage3

✕ 3ResBlockStage4
TransposeConv 256, 2, 2

ConvBlock 256, 3, 1Conv
Block

TransposeConv 128, 2, 2

ConvBlock 128, 3, 1
TransposeConv 64, 2, 2

ConvBlock 64, 3, 1
TransposeConv 32, 2, 2

ConvBlock 32, 3, 1

Conv
Block

Conv
Block

Conv
Block

Upsample
Conv Classes, 1, 1

Decoder

Fig. 2. Detailed architecture of ResUnet: A 2D/3D ResNet-50 [3] encoder, a decoder,
and four skip connections between encoder and decoder. Green ‘ConvBlock’: 2D Conv-
Batch Normalization(BN)-ReLU or 3D Conv-IN-LeakyReLU; Yellow ‘TransConv’:
2D/3D transposed convolutional layer. Note that the numbers in each block / layer
indicate the number of filters, kernel size, and stride, respectively.

3D volume

𝜏! ∈ 𝒯 𝜏" ∈ 𝒯

slices slices
slice 1 slice m

...
volume volume

EMATeacher path

slice 1 slice m

...

Student path

𝑓"#$%&'(𝑓")*$+,' 𝑓!)*$+,' 𝑓!#$%&'(

ℒ)*$+,'

ℒ#$%&'(

ℒ)*$+,'→#$%&'(

ℒ#$%&'(→)*$+,'

ℒ./ = ℒ)*$+,' + ℒ#$%&'(+ ℒ)*$+,'→#$%&'(+ ℒ#$%&'(→)*$+,'

Fig. 3. Intuitive explanation of volume-slice consistency mechanism.

5. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. In: ICCV (2021) 2, 3

6. Xie, Y., Zhang, J., Xia, Y., Shen, C.: A mutual bootstrapping model for automated
skin lesion segmentation and classification. IEEE Transactions on Medical Imaging
39(7), 2482–2493 (2020) 2

7. Zhou, H.Y., Lu, C., Yang, S., Han, X., Yu, Y.: Preservational learning improves
self-supervised medical image models by reconstructing diverse contexts. In: ICCV.

6 Y. Xie et al.

pp. 3499–3509 (2021) 3

	Appendix for UniMiss

