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Abstract. Multiple Instance Learning (MIL) methods have become
increasingly popular for classifying gigapixel-sized Whole-Slide Images
(WSIs) in digital pathology. Most MIL methods operate at a single WSI
magnification, by processing all the tissue patches. Such a formulation
induces high computational requirements and constrains the contextu-
alization of the WSI-level representation to a single scale. Certain MIL
methods extend to multiple scales, but they are computationally more
demanding. In this paper, inspired by the pathological diagnostic pro-
cess, we propose ZoomMIL, a method that learns to perform multi-level
zooming in an end-to-end manner. ZoomMIL builds WSI representa-
tions by aggregating tissue-context information from multiple magni-
fications. The proposed method outperforms the state-of-the-art MIL
methods in WSI classification on two large datasets, while significantly
reducing computational demands with regard to Floating-Point Opera-
tions (FLOPs) and processing time by 40–50×. Our code is available at:
https://github.com/histocartography/zoommil.

Keywords: Whole-Slide Image Classification, Multiple Instance Learn-
ing, Multi-scale Zooming, Efficient Computational Pathology

1 Introduction

Histopathological diagnosis consists of examining tissue samples to character-
ize their phenotype, morphology, and the topological distribution of their con-
stituents. With advancements in slide-scanning technologies, tissue specimens
can now be digitized into Whole-Slide Images (WSIs) with high resolution, en-
abling the pathological assessment to be conducted on a computer rather than
under a microscope. A WSI contains rich tissue information and can be up to
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100 000×100 000 pixels in size at 40× magnification (0.25µm/pixel). Due to the
image size, complexity, and multi-scale nature of biological systems, a pathol-
ogist generally examines a WSI in a hierarchical manner, i.e., detecting infor-
mative regions at a low magnification, and evaluating selected areas at a high
magnification, as shown in Figure 1(a). However, such manual examination of
a gigapixel-sized WSI can be cumbersome, time-consuming, and prone to inter-
and intra-observer variability [16,14].

To alleviate the aforementioned challenges, Deep Learning (DL)-based diag-
nosis tools are being developed in digital pathology. However, these tools en-
counter additional challenges pertaining to the size of WSIs, and the difficulty
of acquiring fine-grained annotations. To this end, DL methods have been pro-
posed, in particular, using Multiple Instance Learning (MIL). Here, a WSI is
decomposed into a bag of patches, which are individually encoded by a Convolu-
tional Neural Network (CNN) backbone. A pooling operation then combines the
patch embeddings into a slide-level representation that is finally mapped to the
slide label. Although MIL methods have achieved remarkable performance on
several pathology tasks, e.g., tumor classification [10,32,42,39], tumor segmenta-
tion [22,30], and survival prediction [44], they pose the following drawbacks.

First, the performance of MIL methods relies on a carefully tuned context-
resolution trade-off [6,41,36], i.e., an optimal operating resolution that includes
adequate context in a patch. As the dimensions of diagnostically relevant tissue
vary significantly in histopathology, patches of different sizes across magnifica-
tions convey different context information about the tissue microenvironment.
Thus, identifying an optimal resolution and patch size involves several tailored
and tedious steps. Typical MIL methods use patches at a single magnification
(Figure 1(b)) and disregard the spatial distribution of patches, causing the above
problem. Although [33,40] address this via visual self-attention, they are con-
strained by expensive computations of attention scores on a large number of
patches in a WSI. Differently, [26] addresses the issue via random patch sampling
and sparse convolutions, consequently preventing deterministic inference. In the
literature, other methods [41,17,19] are extracting concentric patches across mul-
tiple magnifications (Figure 1(c)) to acquire richer context per patch. However,
they are computationally more expensive as they need to encode all patches at
high magnification and the corresponding patches across lower magnifications.

Second, most MIL methods process all tissue patches at high magnifica-
tion, thus processing a large number of uninformative patches, which increases
computational cost, inference time, and memory requirements. For instance, in-
ference on a WSI of 50 000 × 50 000 pixels using CLAM [32], an MIL method,
requires ≈150 Tera Floating-Point Operations (FLOPs), which is 37 500× the
processing of an ImageNet [12] sample by ResNet34 [18]. Further, the high mem-
ory footprint of MIL methods inhibits their scalability to large histopathology
images, e.g., prostatectomy slides which can be 300 000×400 000 pixels at 40×
magnification. Such computational requirements can in turn hinder the clinical
deployment of these methods. Their adoption becomes even prohibitive when
computational resources are scarce due to limited access to GPUs or cloud ser-
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Fig. 1. Comparison of different methods for the diagnosis of WSIs

vices. In view of the above challenges, a multi-scale context-aware MIL method
with high computational efficiency is desired.

In this paper, we propose ZoomMIL, a novel method inspired by the hi-
erarchical diagnostic process of pathologists. We first select Regions-of-Interest
(ROIs) at low magnification, and zoom in on them at high magnification for
finer analysis, as in Figure 1(d). The RoI selection is performed through a gated-
attention and a differentiable top-K (Diff-TopK) module, which learns where
to zoom, in an end-to-end manner, while moderating computational require-
ments at high magnifications. The process can be repeated across an arbitrary
number of magnifications, e.g., 5×→10×→20×, as per the task at hand. Fi-
nally, we aggregate the information acquired across multiple scales to obtain a
context-aware WSI representation for downstream pathology tasks, as shown in
Figure 2. In summary, our contributions are:

1. A novel multi-scale context-aware MIL method that learns to perform multi-
level zooming in an end-to-end manner for WSI classification.

2. A computationally more efficient method compared to the state of the art
in MIL, e.g., 40× faster inference on a WSI of size 26 009×18 234 pixels at
10× magnification, while achieving better (2/3 datasets) or comparable (1/3
datasets) WSI classification performance.

3. Comprehensive benchmarking of the method with regard to WSI classifica-
tion performance and computational requirements (on GPU and CPU) on
multiple datasets across multiple organs and pathology tasks, i.e., tumor
subtyping, grading, and metastasis detection.

2 Related Work

2.1 Multiple Instance Learning in Histopathology

MIL in histopathology was introduced in [20] to classify breast and colon RoIs.
The experiments established the superiority of attention-based pooling over max
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and mean pooling. Concurrently, [10] scaled MIL to WSIs for grading prostate
biopsies. They proposed Recurrent Neural Network (RNN)-based pooling for
end-to-end training. Later, several works [44,32,31] consolidated attention-based
MIL across several organs and pathology tasks. Recently, transformer-based
MIL [33,40] has been proposed to consider inter-patch dependencies, with the
downside of computing a quadratic number of interactions, which introduces
memory constraints. Further, all the above MIL methods are limited to operate
on all patches in a WSI at a single magnification. In view of the benefits of
multi-scale information in histopathology [4,15,43,28,19,36], a few recent meth-
ods [17,27] have extended MIL to combine information across multiple magnifi-
cations. However, similar to single-scale methods, these multi-scale versions also
require the processing of all patches in a WSI, which is computationally more
expensive. In contrast, our proposed ZoomMIL learns to identify informative
regions at low magnification and subsequently zooms in on these regions at high
magnification for efficient and comprehensive analysis. Differently, several other
approaches aim to learn the inter-instance relations in histopathology via Graph
Neural Networks (GNNs) [3,36,45,38,29,1,2] or CNNs [42,39,26].

2.2 Instance Selection Strategies in Histopathology

Most MIL methods encode all patches in a WSI irrespective of their functional
types. This compels MIL to be computationally expensive for large WSIs. To
reduce the computational memory requirements, [26] randomly sampled a subset
of instances, with the consequence of potentially missing vital information, espe-
cially when the informative set is small, e.g., in metastasis detection. Differently,
reinforcement learning-based methods [13,37] have also been developed to this
end. [37] proposed to sequentially identify some of the diagnostically relevant
RoIs in a WSI by following a parameterized policy. However, the method lever-
ages a very coarse context for the RoI identification and is limited to utilizing
only single-scale information for the diagnosis. Additionally, the reinforcement
learning method [13] and the recurrent visual attention-based model [7] aim to
select patches, which mimics pathological diagnosis. However, these methods
require pixel-level annotations to learn discriminative regions, which is expen-
sive to acquire on large WSIs. In contrast to the above methods, ZoomMIL
requires only WSI-level supervision. Our method is flexible to attend to several
magnifications, while efficiently classifying WSIs with high performance.

The attention-score-based iterative sampling strategy proposed in [25,23]
closely relates to our work. For the final classification, the selected patch embed-
dings are simply concatenated, analogous to average pooling. Instead, ZoomMIL
incorporates a dual gated-attention module between two consecutive magnifica-
tions to simultaneously learn to select the relevant instances to be zoomed in on,
and learn an improved WSI-level representation for the lower magnification.

The patch selection module employed in our work is inspired by the perturbed
optimizer-based [8] differentiable Top-K algorithm proposed in [11]. ZoomMIL
advances upon [11] by extending to several magnifications, i.e., multi-level zoom-
ing, and scaling the applications to gigapixel-sized WSIs.
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3 MIL with Differentiable Zooming

In this section, we present ZoomMIL, which identifies informative patches at
low magnification and zooms in on them for fine-grained analysis. In Sec. 3.1, we
introduce the gated-attention mechanism determining the informative patches at
a given magnification. In Sec. 3.2, we describe how to enable the attention-based
patch selection to be differentiable while employing multiple magnifications. Fi-
nally, we present in Sec. 3.3 our overall architecture, in particular our proposed
Dual Gated Attention and multi-scale information aggregation.

3.1 Attention-based MIL

In MIL, an input X is considered as a bag of instances X = {x1, ...,xN}. Given
a classification task with C labels, there exists an unknown label yi ∈ C for each
instance and a known label y ∈ C for the bag. In our context, the input is a
WSI and the instances denote the extracted patches. We follow the embedding-
based MIL approaches [20,32,40], where a patch-level feature extractor h maps
each patch xi to a feature vector hi = h(xi) ∈ RD. Afterwards, a pooling
operator g(·) aggregates the feature vectors hi=1:N to a single WSI-level feature
representation. Finally, a classifier f(·) uses the WSI representation to predict
the WSI-level label ŷ ∈ C. The end-to-end process can be summarized as:

ŷ = f

(
g
(
{h(x1), . . . , h(xN )}

))
. (1)

To aggregate the patch features, we use attention-pooling, specifically, Gated
Attention (GA) from [20]. Let H = [h1, . . . ,hN ]⊤ ∈ RN×D be the patch-level
feature matrix, then the WSI-level representation g is computed as:

g =

N∑
i=1

aihi, ai =
exp{w⊤(tanh(Vhi)⊙ η(Uhi))}∑N

j=1 exp{w⊤(tanh(Vhj)⊙ η(Uhj))}
, (2)

where w∈RL×1, V∈RL×D, U∈RL×D are learnable parameters with hidden di-
mension L, ⊙ is element-wise multiplication, and η(·) is the sigmoid function.
While previous attention-based MIL methods [20,32] were designed to operate
at a single magnification, we propose an efficient and flexible framework that can
be extended to arbitrarily many magnifications while being fully differentiable.

3.2 Attending to Multiple Magnifications

We assume the WSI is accessible at magnifications indexed by m ∈ {1, . . . ,M},
where the highest magnification is at M and the magnification at m + 1 is
twice that at m, consistent with the pyramidal format of WSIs. To efficiently
extend MIL to multiple magnifications, we hierarchically identify informative
patches from low-to-high magnifications and aggregate their features to get the
WSI representation. To identify the patches at m, we first compute am ∈ RN ,
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Fig. 2. Overview of the proposed ZoomMIL. (I) and (II) present the distinct training
and inference modes, generically exemplified for M magnifications.

which includes an attention score per patch. Then, the top K patches with the
highest scores are selected for further processing at a higher magnification. The
corresponding selected patch feature matrix is denoted by

H̃m = T⊤
mHm , (3)

where Tm ∈ {0, 1}N×K is an indicator matrix and Hm ∈ RN×D is the patch
feature matrix at m.

Instead of a handcrafted approach, we propose to drive the patch selection
at m directly by the prediction output of f(·). This could be achieved via a
backpropagation path from the output of f(·) to the attention module at m,
without introducing any additional loss or associated hyperparameters. However,
this naive formulation is non-differentiable as it involves a Top-K operation. To
address this problem, we build on the perturbed maximum method [8] to make
the Top-K selection differentiable, inspired by [11], and apply it to the attention
weights am at magnification m. Specifically, am is first perturbed by adding
uniform Gaussian noise Z ∈ RN . Then, a linear program is solved for each of the
perturbed attention weights, and their results are averaged. The forward pass of
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the differentiable Top-K module can thus be written as:

T = E
Z∼N (0,1)

[
argmax

T̂

⟨T̂,
(
am + σZ

)
1⊤⟩

]
, (4)

where 1⊤ = [1 · · · 1] ∈ R1×K and (am + σZ)1⊤ ∈ RN×K denotes the perturbed
attention weights repeated K times, and ⟨·⟩ is a scalar product preceded by a
vectorization of the matrices. The corresponding Jacobian is defined as:

Jam
T = E

Z∼N (0,1)

[
argmax

T̂

⟨T̂,
(
am + σZ

)
1⊤⟩Z⊤/σ

]
. (5)

More details on the derivation are provided in the supplemental material. The
differentiable Top-K operator enables to learn the parameters of the attention
module that weighs the patches at specific magnifications. Unlike [11], where
patch sizes are scaled proportionally to the magnifications, we maintain a con-
stant patch size across magnifications. This renders the number of patches pro-
portional to the magnifications. It also provides different fields-of-view of the
tissue microenvironment and enables us to capture a variety of contexts. This is
crucial for analyzing WSIs as they contain diagnostically relevant constituents of
various sizes. To achieve the zooming objective, we expand the indicator matrix

Tm to select from the patch features Hm′ ∈ RN ·4(m
′−m)×D, where m′ > m.

Specifically, we compute the Kronecker product between Tm and the identity

matrix 1m′ = diag(1, · · · , 1) ∈ R4(m
′−m)×4(m

′−m)

to obtain the expanded indi-

cator matrix Tm′ ∈ {0, 1}N ·4(m
′−m)×K·4(m

′−m)

. Analogously to Eq. (3), patch
selection at m′ using the attention weights from m can be performed using

H̃m′ =
(
Tm ⊗ 1m′

)⊤
Hm′ , (6)

where Hm′ is the feature matrix at m′ and H̃m′ is the selected feature matrix.

3.3 Dual Gated Attention and Multi-Scale Aggregation

Figure 2 shows ZoomMIL in its training (I) and inference (II) mode.
Training mode: The feature matrix H1 at m=1 passes through a Dual

Gated Attention (DGA) block. DGA consists of two gated-attention modules
GA1 and GA′

1. GA1 is trained to obtain an optimal attention-pooled WSI-level
representation g1 at low magnification. GA′

1 calculates attention weights a′1
that are used to identify important patches to zoom in. Alternatively, a single
attention module could be used for both tasks. However, this would prevent op-
timal zooming, as the selected low-magnification patches would aim to optimize
the classification performance only with information from the low magnifica-
tion. Employing separate attention modules decouples the optimization tasks,
and in turn, enables to obtain complementary information from both magnifica-
tions. Subsequently, the differentiable Top-K selection module, T1, is employed
to learn to select the most informative patches. The following selected higher-
magnification patch feature matrix H̃2 is obtained via Eq. (6).
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The process of selecting patch features for every subsequent higher magnifi-
cation is repeated until the highest magnification M . The selected patch features
H̃M at M go through a last gated-attention block GAM to produce gM . Finally,
the attention-pooled features from all magnifications, g1,g2, . . . ,gM , are aggre-
gated via sum-pooling to get a multi-scale, context-aware representation for the
WSI. Inspired by residual learning [18], sum-pooling is used, as the features
across different magnifications are closely related and the summation leverages
their complementarity. The final classifier f(·) maps the WSI representation to
the label y ∈ C by producing the model prediction ŷ. The training phase can be
regarded as extending Eq. (1) with sum-pooling over multiple magnifications:

ŷ = f
(
g1(H1) + g2(H̃2), · · ·+ gM (H̃M )

)
. (7)

Inference mode: The differentiable Top-K operator in our model learns
to identify informative patches during training. However, this operator includes
random perturbations to the attention weights, and thus makes the forward pass
of the model non-deterministic. Therefore, we replace differentiable Top-K with
conventional non-differentiable Top-K during inference, which is also faster as
no perturbations have to be computed. As shown in Figure 2, another crucial
difference to the training mode is that the patch selection directly operates

on the WSI patches, Pm′ ∈ RN ·4(m
′−1)×ph×pw×pc , instead of the pre-extracted

patch features Hm′ . This avoids the extraction of features for uninformative
patches during inference, unlike other MIL methods. It significantly reduces the
computational requirements and speeds up model inference.

4 Experiments

4.1 Datasets

We benchmark ZoomMIL on three H&E stained, public WSI datasets.
CRC [34] contains 1133 colorectal biopsy and polypectomy slides from non-

neoplastic, low-grade, and high-grade lesions, accounting for 26.5%, 48.7%, 24.8%
of the data. The slides were acquired at the IMP Diagnostics laboratory, Portu-
gal, and were digitized by a Leica GT450 scanner at 40×. We split the data into
70%/10%/20% stratified sets for training, validation, and testing.

BRIGHT [9] consists of breast WSIs from non-cancerous, precancerous, and
cancerous subtypes. The slides were acquired at the Fondazione G. Pascale, Italy,
and scanned by an Aperio AT2 scanner at 40×. We used the BRIGHT challenge
splits1 containing 423, 80, and 200 WSIs for training, validation, and testing.

CAMELYON16 [5] includes 270 WSIs, 160 normal and 110 with metas-
tases, for training, and 129 slides for testing. The slides were scanned by 3DHIS-
TECH and Hamamatsu scanners at 40× at the Radboud University Medical
Center and the University Medical Center Utrecht, Netherlands. We split the
270 slides into 90%/10% stratified sets for training and validation.

1 www.research.ibm.com/haifa/Workshops/BRIGHT

www.research.ibm.com/haifa/Workshops/BRIGHT
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The average number of (pixels, patches), within the tissue area, at 20× mag-
nification for CRC, BRIGHT, and CAMELYON16 datasets are (227.28 Mpx,
3468), (1.04 Gpx, 15872), and (648.28 Mpx, 9892), respectively.

4.2 Implementation details

Preprocessing: For each WSI, we detect the tissue area using a Gaussian tissue
detector [21] and divide the tissue into 256×256 patches at all considered mag-
nifications. We ensure that each high-magnification patch is associated with the
corresponding lower-magnification patch. We encode the patches with ResNet-
50 [18] pre-trained on ImageNet [12] and apply adaptive average pooling after
the third residual block to obtain 1024-dimensional embeddings.

ZoomMIL: The gated-attention module comprises three 2-layer Multi-Layer
Perceptrons (MLPs), where the first two are followed by Hyperbolic Tangent
and Sigmoid activations, respectively. The classifier is a 2-layer MLP with ReLU
activation. We use a dropout probability of 0.25 in all fully-connected layers.

Implementation: All methods are implemented in PyTorch [35] and run
on a single NVIDIA A100 GPU. ZoomMIL uses K = {16, 12, 300} on CRC,
BRIGHT, and CAMELYON16, respectively, and our more efficient variant
ZoomMIL-Eff uses K = {12, 8} on CRC and BRIGHT, respectively. We use
the Adam optimizer [24] with 0.0001 learning rate and plateau scheduler (pa-
tience=5 epochs, decay rate=0.8). The experiments are run for 100 epochs with
a batch size of one. For CRC & CAMELYON16, the models with the best val-
idation loss are saved for testing. On BRIGHT, we observed that the baselines
perform poorly compared to ZoomMIL when using validation loss as the model
selection criterion. We therefore employ best validation weighted-F1 for model
selection on BRIGHT since it improves the baselines, giving them a better com-
petitive chance against ZoomMIL.

4.3 Results and Discussion

Baselines: We compare ZoomMIL with state-of-the-art MIL methods. Specif-
ically, we compare with ABMIL [20], which uses a gated-attention pooling, and
its variant CLAM [32], which also includes an instance-level clustering loss.
We further compare with two spatially-aware methods, namely, TransMIL [40]
which models instance-level dependencies using transformer-based pooling, and
SparseConvMIL [26] which selects random subsets of patches and employs
sparse convolutions for pooling. In addition, we compare with multi-scale meth-
ods MSMIL [17] and DSMIL [27], which are computationally less efficient
than ZoomMIL as they encode all patches in a WSI across all considered
magnifications. For completeness, we also include vanilla MIL methods based
on max-pooling (MaxMIL) [26] and mean-pooling (MeanMIL) [26], following
SparseConvMIL’s strategy of random patch selection. Additional implementa-
tion details and hyper-parameters are provided in the supplemental material. For
a fair comparison, preprocessing including the extraction of patch embeddings
is done consistently in the same manner, as described in Section 4.2.
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Table 1. Performance and efficiency measurement on CRC [34]. The best and second-
best classification results are in bold and underlined, respectively.

Methods
Classification Computation

Weighted-F1(%) Accuracy(%) TFLOPs Time(s)

MaxMIL [26] (20×) 82.2±0.9 82.2±1.2 0.96 0.13
MeanMIL [26] (20×) 84.3±0.8 84.1±1.2 0.96 0.12
SparseConvMIL [26] (20×) 89.6±1.3 89.6±0.9 0.96 0.13
ABMIL [20] (20×) 90.1±0.6 90.2±0.5 13.63 4.85
CLAM-SB [32] (20×) 90.9±0.6 90.9±0.5 13.63 4.85
TransMIL [40] (20×) 89.8±1.1 90.2±0.9 13.63 4.85

MSMIL [17] (5× + 10× + 20×) 84.6±0.1 84.9±0.2 17.88 6.37
DSMIL [27] (5× + 10× + 20×) 91.1±1.1 91.2±1.1 17.94 6.37

ZoomMIL-Eff (5× → 10×) 90.3±1.3 90.3±1.3 1.06 0.38
ZoomMIL (5× → 10× → 20×) 92.0±0.6 92.1±0.7 1.40 0.50

Table 2. Performance and efficiency measurement on BRIGHT [9]. The best and
second-best classification results are in bold and underlined, respectively.

Methods
Classification Computation

Weighted-F1 Accuracy TFLOPs Time(s)

MaxMIL [26] (10×) 46.8±3.7 51.3±1.7 0.96 0.13
MeanMIL [26] (10×) 44.9±2.8 47.1±0.1 0.96 0.12
SparseConvMIL [26] (10×) 53.2±3.6 55.3±3.7 0.96 0.13
ABMIL [20] (10×) 63.5±2.7 65.5±1.9 16.45 5.86
CLAM-SB [32] (10×) 63.1±1.7 64.3±1.7 16.45 5.86
TransMIL [40] (10×) 65.5±2.8 66.0±2.7 16.46 5.86

MSMIL [17] (1.25× + 2.5× + 10×) 61.7±0.6 62.5±1.1 21.59 7.69
DSMIL [27] (1.25× + 2.5× + 10×) 63.1±1.6 64.0±1.1 21.66 7.69

ZoomMIL-Eff (1.25× → 2.5×) 66.0±1.9 66.5±1.5 0.40 0.14
ZoomMIL (1.25× → 2.5× → 10×) 68.3±1.1 69.3±1.0 1.29 0.46

WSI classification performance: We present the classification results in
terms of weighted F1-score and accuracy in Table 1, 2, and 3. Mean±standard
deviation of the metrics is computed over three runs with different weight ini-
tializations. Corresponding magnifications of operation are shown alongside each
method for each dataset. We include two versions of ZoomMIL using either 2
or 3 magnifications, denoted as ZoomMIL-Eff (efficient) and ZoomMIL.

On CRC, ZoomMIL outperforms CLAM-SB and TransMIL by 1.1% and
2.2% weighted F1-score, and ZoomMIL-Eff achieves comparable performance.
Furthermore, ZoomMIL shows superior performance compared to the multi-
scale methods MSMIL and DSMIL. For the individual classes, ZoomMIL
achieves 94.3%, 93.6%, and 86.4% average F1-scores in the one-vs-rest setting.
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Table 3. Performance and efficiency measurement on CAMELYON16 [5]. The best
and second-best classification results are in bold and underlined, respectively.

Methods
Classification Computation

Weighted-F1(%) Accuracy(%) TFLOPs Time(s)

MaxMIL[26] (20×) 64.0±3.0 67.1±0.9 0.96 0.13
MeanMIL [26] (20×) 63.5±1.1 65.9±1.6 0.96 0.12
SparseConvMIL [26] (20×) 67.7±0.6 68.7±0.1 0.96 0.13
ABMIL [20] (20×) 83.2±1.7 84.0±1.3 39.12 13.92
CLAM-SB [32] (20×) 83.3±1.5 84.0±1.3 39.12 13.92
TransMIL [40] (20×) 83.6±2.6 85.3±1.9 39.12 13.92

MSMIL [17] (10× + 20×) 81.4±1.1 82.4±1.0 48.87 17.41
DSMIL [27] (10× + 20×) 78.5±0.42 79.6±0.3 48.95 17.41

ZoomMIL (10× → 20×) 83.3±0.3 84.2±0.4 14.94 5.32

WSIs in BRIGHT are 4.5× larger than in CRC and thus provide a bet-
ter evaluation ground for efficient scaling. ZoomMIL achieves the best perfor-
mance, outperforming MSMIL by 6.6%, CLAM-SB and DSMIL by 5.2%, and
TransMIL by 2.8% in weighted F1-score. Notably, ZoomMIL-Eff achieves the
second-best results. For the individual classes, ZoomMIL reaches average F1-
scores of 70.4%, 56.5%, and 77.8%. The performance is lowest for the challenging
pre-cancerous class, which often resembles the other two classes.

For CAMELYON16, we set the lowest magnification to 10× as the metastatic
regions can be extremely small (see Figure 4). Nevertheless, it still ad-
versely impacts the performance, resulting in 1.1% lower average accuracy than
TransMIL. However, this translates to misclassifying only 1-2 test WSIs.

Overall, ZoomMIL performs better on CRC and BRIGHT, while being com-
parable to the state of the art on CAMELYON16. It also consistently outper-
forms ZoomMIL-Eff, highlighting the apparent performance-efficiency trade-
off, i.e., performance reduction in exchange for gains in computational efficiency.

Efficiency measurements: We analyze the efficiency in terms of FLOPs and
average processing time for inference (see Table 1, 2, and 3). Note that the
computational cost in the MIL modules is negligible compared to patch fea-
ture extraction, which is computationally the most expensive. The FLOPs and
processing time for different methods can therefore appear to be equal as their
difference only becomes visible several digits after the decimal point. On CRC,
ZoomMIL uses ≈10× less FLOPs and time than CLAM-SB and TransMIL.
Compared to MSMIL and DSMIL, this factor increases to >12×. On BRIGHT,
our efficient variant reduces computational requirements by >50× compared to
MSMIL andDSMIL, and >40× compared to CLAM-SB and TransMIL while
providing comparable performance. On CAMELYON16, ZoomMIL uses ≈ 1/3
FLOPs compared to MSMIL, DSMIL, CLAM-SB, and TransMIL. The rela-
tively lower efficiency gain is due to the fact that metastatic regions occupy only
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Fig. 3. Throughput vs classification accuracy for different MIL methods on BRIGHT,
(left) on 1 single-core CPU, (right) on 1 NVIDIA A-100 GPU. Efficiency frontier curves
are drawn in red and blue for CPU and GPU, respectively.

a small fraction of a WSI, and thus need to be analyzed at a finer magnification.
Across all datasets, the methods adopting random patch selection (MaxMIL,
MeanMIL, and SparseConvMIL) have similar computational requirements as
ZoomMIL but perform significantly worse.

To further highlight our efficiency gain, we show in Figure 3 the model
throughput (images/hour) against the performance (accuracy) for all methods
on BRIGHT. The marked efficiency frontier curves signify the best possible ac-
curacies for different minimal throughput requirements. Noticeably, ZoomMIL-
Eff running on a single-core CPU processor (≈300 images/h) provides similar
throughput to MSMIL, DSMIL, CLAM-SB, and TransMIL running on a
cutting-edge NVIDIA A100 GPU (≈500–600 images/h). ZoomMIL’s low com-
putational requirements make it more practical and suitable for clinical deploy-
ment, where IT infrastructures are often under-developed and need large invest-
ments to establish and maintain a digital workflow.

Interpretability We interpret ZoomMIL by qualitatively analyzing its patch-
level attention maps. Figure 4(a,b) show the maps for two cancerous WSIs in
BRIGHT at 1.25×, and Figure 4(c-f) show the maps for four metastatic WSIs
in CAMELYON16 at 10×. We further include corresponding tumor regions an-
notated by an expert pathologist for comparison. Brighter regions in the maps
mark higher attention scores, i.e., more influential for model prediction.

For the BRIGHT WSIs, ZoomMIL correctly attends to cancerous areas in
(a,b), pays lower attention to the pre-cancerous area in (b), and least attention
to the remaining non-cancerous areas that include non-cancerous epithelium,
stroma, and adipose tissue. For the CAMELYON16 WSIs, (c,d) are correctly
classified as ZoomMIL gives high attention to the metastatic regions of differ-
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Fig. 4. Annotated tumor regions and attention maps from the lowest magnification of
ZoomMIL are presented for (a,b) BRIGHT and (c-f) CAMELYON16 WSIs.

ent sizes. However, the extremely small metastases in (e,f) get low attention
and are disregarded by the Top-K module leading to misclassifying the WSIs.
Notably, for cases with tiny metastases, relatively higher attention is imparted
to the periphery of the tissues. This is consistent with the fact that metastases
generally appear in the subcapsular zone of lymph nodes, as can be observed in
(c-f). The presented visualizations are obtained from low magnifications, which
signifies ZoomMIL’s ability to learn to zoom in. More interpretability maps for
other classes and fine-grained attention maps from higher attention modules in
ZoomMIL are provided in the supplemental material.

Ablation study: We ablated different modules in ZoomMIL-Eff, due to its
simple 2-magnification model. The results on BRIGHT are given in Table 4.

Differentiable patch selection: We compared our attention-based differ-
entiable patch selection (Diff-TopK) against three alternatives: random selec-
tion at the lowest magnification (Random K @ 1.25×), random selection at the
highest magnification (Random 4K @ 2.5×), and the non-differentiable Top-K
selection (NonDiff-TopK) at the lowest magnification. The top rows in Ta-
ble 4 show the superiority of Diff-TopK. Due to its differentiability, it learns
to select patches via the gradient optimization of the model’s prediction.

Dual gated attention: We examined DGA consisting of two separate gated
attention modules GA1 and GA′

1 at low magnification, as discussed in Sec-
tion 3.3. The former computes a slide-level representation and the latter learns
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Table 4. Ablation study on BRIGHT, with the varied algorithmic component tabu-
lated in the left-most column. All experiments use K = 8.

Methods Weighted F1(%) Accuracy(%)

P
a
tc
h
se
l. Random K @ 1.25× 61.0 61.0

Random 4K @ 2.5× 59.6 60.0
NonDiff-TopK K @ 1.25× 59.9 60.0
Diff-TopK K @ 1.25× (Ours) 68.1 68.0

A
tt
n
.

Single GA @ 1.25× 59.6 61.0
DGA @ 1.25× (Ours) 68.1 68.0

F
ea
t.

Features @2.5× 62.7 63.5
Features @1.25× || @2.5× 64.9 65.0
Features @1.25× + @2.5× (Ours) 68.1 68.0

to select patches at higher magnification. We can conclude from Table 4 that
two separate attentions lead to better patch selection and improved slide repre-
sentation for overall improved classification.

Feature aggregation: We aggregate slide-level representations across mag-
nifications through sum-pooling, as shown in Eq. (7). Among several alternatives,
we compared with: using the highest-magnification features (Features@2.5×) and
fusing representations via concatenation (represented as @1.25× || @2.5×). Ta-
ble 4 shows that concatenation improves performance, indicating the value of
multi-scale information. However, our sum-pooling, which is inspired by residual
learning [18], significantly outperforms concatenation as it leverages the comple-
mentarity of the two magnifications more effectively.

5 Conclusion

In this work, we introduced ZoomMIL, a novel framework for WSI classification.
The method is more than an order of magnitude faster than previous state-of-
the-art methods during inference while achieving comparable or better accuracy.
Essential for our method is the concept of differentiable zooming that allows the
model to learn which patches are informative and thus worth zooming in on.
We conduct extensive quantitative and qualitative evaluations on three differ-
ent datasets and demonstrate the importance of each component in our model
with a detailed ablation study. Finally, we show that ZoomMIL is a modu-
lar architecture that can easily be deployed in different flavors, depending on
the performance-efficiency requirements in a given application. In future work,
it would be interesting to further study the attention maps of ZoomMIL and
compare them with the visual attention of pathologists.
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