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Table 1. Description of attributes in our dataset.

Attribute ID Description

Background Clutter BC Background has similar colors with the object.
Camera Motion CM There are abrupt motions of the camera.
Deformation DF The target object is deformable.
In-plane Rotation IR Target rotates in-plane.
Illumination Variation IV The illumination is too low or high or varies.
Out-of-plane Rotation OR Target rotates out-of-plane.
Point Cloud Sparsity PCS Point clouds are too few to distinguish the object.
Similar Targets ST There are objects similar to the target in the scene.
Target Loss TL The target is fully occluded or out-of-view.

A Attribute Description

We give detailed description of each attribute in Table 1.

B Analysis on 3D Annotation Accuracy

To ensure high-quality annotation, we test the similarity between the projected
2D BBoxes from our 3D annotation and the manually annotated 2D BBoxes.
In the projection process, we project the 3D BBox to a 2D plane to give 2D-
level annotations, i.e., axis-aligned BBox. The projection from 3D to 2D BBox is
implemented by finding the minimum point set and forming a bounding rectangle
given 8 corner points. Following the principle that the 2D BBox will tightly fit
the 3D BBox according to the associations, we generate the 2D BBoxes from the
projection of 3D BBox. We manually annotate 10% of the data randomly with 2D
BBoxes, which is used to validate 3D annotation accuracy. Then the projected
BBoxes will be compared with the manually annotated ones. The visualisation
of comparison is shown in Fig. 1. We calculate the average projection error
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and average IoU between them, which is 12.2 pixels and 66%, indicating that
our annotated 3D BBoxes are reliable. Besides, the projection enables multiple
evaluations and mixed-use on the proposed dataset, which will be discussed in
Sec. E.2.

Fig. 1. Qualitative examples of projected 2D BBoxes from 3D annotation (Green) and
manually annotated 2D BBoxes (Red).

C Evaluation Protocols

Here we give details of the 3D IoU calculation, which is used as one of our
evaluation protocols. According to [3], the IoU measure for general 3D-oriented
boxes is based on the Sutherland-Hodgman Polygon clipping algorithm. For two
3D boxes, we firstly transform both boxes using the inverse transformation,
after which one box will be axis-aligned and centered around the origin. Then,
each face is clipped as the convex polygon between the predicted box and the
ground truth box according to the polygon clipping algorithm. Finally, the IoU
is computed from the volume of the intersection and the volume of the union of
two boxes by swapping the two boxes, as used in [1].

D More Details of the Proposed Method

Backbones. The network architecture is shown in Fig. 2. The model of Sparse
3D CNN is a 3D U-Net structure, in which the convolution and up-convolution
are implemented as sparse convolution [2]. As shown in the left part of Fig. 2,
the parameters of each convolution layer are the number of input pixels and
the size of output features respectively. In the right part of Fig. 2, Pointnet++
encoder-decoder takes as input a point cloud to generate dense features. We
use four Set Abstraction (SA) layers [8] to downsample and encode the point
clouds. We also leverage three Feature Propogation (FP) layers to interpolate
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Fig. 2. The network architecture of our
backbone, consisting of Sparse 3D CNN and
Pointnet++.
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Fig. 3. Region proposal network (RPN)
module in our architecture.

and decode features. The parameters of each layer are also the number of input
points and the size of output features respectively. Finally, the pixel-wise features
and point-wise features are concatenated together and fed into next module.

RPN module. The Fig. 3 illustrates the architecture of the VoteNet-based
RPN module. A point-wise MLP (256, 256, 3+256) is applied to the fused feature
for object center voting. In addition, another MLP (256, 256, 1) is used to
predict a classification score (target or background) for each point. After that, the
predicted vote centers and scores are concatenated together and then clustered
into k groups through the furthest point sampling and the ball query. Finally, a
mini-PointNet is used to produce the proposals and proposal-wise scores of each
group. The proposals and scores are supervised with our annotated 3D BBox
and the 3D IoU (mentioned in Sec. C) respectively.

E Experiments

E.1 More Visualised Results

Fig. 4 shows the additional results of the comparison to finetuned P2B [9]. These
results demonstrate that our method is more robust to several difficulties. The
first sequence shows our TrackIt3D’s robustness to background clutter. The 2nd

and 3rd sequences show that our method can well handle the problem of out-of-
plane rotation, thanks to the freely rotated 3D BBox which can better describe
the objects compared to the rotation-unable P2B. In the last sequence, our
method can track the turtlebot under fast motion and camera motion, demon-
strating the effectiveness of our proposed model compared to P2B ft.

E.2 Extension on RGBD Tracking

With the projection from 3D BBox to 2D BBox, we can evaluate existing
RGBD trackers on our proposed dataset. Fig. 5 shows the precision and suc-
cess plots of state-of-the-art trackers. Here we use the projected 2D BBoxes as
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Fig. 4.More qualitative results of our baseline TrackIt3D compared with the fine-tuned
P2B.

the groundtruth. The precision plots compute the Euclidean distance between
target center location and labeled groundtruth position of the current frame.
Different trackers are ranked with this metric on a threshold (20 pixels). Since
the precision metric is sensitive to target size and image resolution, we use the
normalised precision [7]. With the normalised precision metric, we rank preci-
sion scores using the Area-Under-Curve (AUC) between 0 to 0.5. The success
plots calculate the Intersection-over-Union (IoU) between predicted BBox and
groundtruth BBox. The tracking methods are ranked using the AUC between 0
to 1. Here we test RGBD state-of-the-art trackers on this dataset, including high-
performance trackers from VOT-RGBD challenge, i.e., DRefine [6], iiau rgbd [6],
SLMD [6], DDiMP [4], Siam LTD [4], and ATCAIS [5], and advanced RGBD
trackers, i.e., DeT [11], TSDM [12], and DAL [10]. As shown, state-of-the-art
trackers can achieve 60% to 70% on precision and success, indicating that our
dataset is less challenging on 2D tasks if we only “track the object on the plane”.
Note that existing state-of-the-arts only obtain precision and success scores of
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Fig. 5. Precision and success plots of evaluated trackers on our dataset with 2D set-
tings. Compared trackers: DeT [11], TSDM [12], DAL [10], DRefine [6], iiau rgbd [6],
SLMD [6], DDiMP [4], Siam LTD [4], ATCAIS [5].

lower than 30% on our proposed 3D task. Therefore, it is more difficult for a
tracker to predict target description in 3D scenes rather than 2D BBoxes.
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