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A Visualization of Vehicle-Lane Interaction (VLI)

As we mentioned in the paper, for the calculation of the lane-level context vector
ami , we use not only the reference lane but also the surrounding lanes with their
relative importance. This idea is based on the fact that human drivers often pay
attention to surrounding lanes when driving along the reference lane. To show
how our model pays attention to the surrounding lanes for the target vehicle, we
use four scenarios in nuScenes and show the results in Figure 1. In the figure, blue
lines denote the reference lanes while the others denote the surrounding lanes.
The surrounding lanes of high importance are shown in red and the surrounding
lanes of low importance are shown in green. We can see in the figure that our
forecasting model pays more attention to the surrounding lanes that are close to
the reference lane.

B Mode Blur in SOTA Model

We show in Figure 2 the prediction examples of the state-of-the-art model [6]. We
note here that the figure is identical to the figure illustrated in the supplementary
material of [6]. The model is built upon [3], which is based on the VAE framework
and learns a diverse joint distribution over multi-agent future trajectories in a
traffic scene. In the figure, green and light blue bounding boxes respectively
denote the AV and surrounding vehicles. The solid lines with light blue dots
denote the predicted trajectories for the surrounding vehicles. We can see in
the figure that some trajectories are located between adjacent lanes, which can
cause uncomfortable rides for the AV with plenty of sudden brakes and steering
changes [4].

C Further Explanation to Average Quality

We mentioned in the paper that ADE1 and FDE1 metrics shown in the tables
presented in the paper represent the average quality of the trajectories generated
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Fig. 1: VLI visualization

for the ground-truth trajectory Y. The ADE1 metric in the table is calculated
as

ADE1 =
1

|D|
∑
Y∈D

ADE(Ŷ,Y), (1)

where D is the test dataset and Ŷ is the prediction of Y. Because there are
relatively few distinct actions that can be taken by a vehicle over a reasonable
time horizon (3 to 6 seconds) [11], the ground-truth trajectories in D can be
clustered into multiple groups, where the trajectories of each group are very
close to each other in Euclidean space. Assume that there are N groups in D
and let Yi denote the i-th group. Then Eqn. 1 can be expressed as

ADE1 =
1

|D|
{
∑

Y∈Y1

ADE(Ŷ,Y) + ...+
∑

Y∈YN

ADE(Ŷ,Y)}

=
|Y1|
|D|

1

|Y1|
∑

Y∈Y1

ADE(Ŷ,Y) + ...+
|YN |
|D|

1

|YN |
∑

Y∈YN

ADE(Ŷ,Y)

= w1
1

|Y1|
∑

Y∈Y1

ADE(Ŷ,Y) + ...+ wN
1

|YN |
∑

Y∈YN

ADE(Ŷ,Y)

= w1AADE(Y1) + ...+ wNAADE(YN ),

(2)

where
∑N

i=1 wi = 1. Since the trajectories of each group are very close to each
other in Euclidean space, AADE(Yi) in the last line of Eqn. 2 can be approxi-
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Fig. 2: Trajectory prediction examples of [6]

Model ADE1/FDE1 ADE15/FDE15

Ours+Multi 2.64/6.32 0.89/1.72
Ours+Single 2.64/6.32 0.97/1.95

(a) nuScenes

Model ADE1/FDE1 ADE12/FDE12

Ours+Multi 1.44/3.15 0.51/0.85
Ours+Single 1.44/3.16 0.53/0.92

(b) Argoverse Forecasting

Table 1: Trajectory generation from single mode and multiple modes

mated as

AADE(Yi) =
1

|Yi|
∑
Y∈Yi

ADE(Ŷ,Y) ≈ 1

K

K∑
k=1

ADE(Ŷk,Yr) (3)

where K = |Yi| is large enough. Here Yr and Ŷk are the most representative
trajectory in Yi and its k-th prediction, respectively. The last term of Eqn. 3 is
the average quality of the K trajectories generated for Yr. Consequently, the
ADE1 metric represents the average quality. The same derivation can be applied
for the FDE1 metric.

D Trajectory Generation from The Most Prominent
Mode

We show in Table 1 the ADE and FDE performance of our forecasting model
when K trajectories are generated from the most prominent mode only. In the
table, Ours+Multi denotes the inference method that generates K future tra-
jectories from the M modes. This method is the same as that described in the
paper. Ours+Single denotes the inference method that generates K future
trajectories from the most prominent mode, which is identified by the weight
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distribution {wm}Mm=1. We can observe from the table that the best quality
(K ≥ 12) is degraded when the trajectories are generated from the most promi-
nent mode only. On the other hand, Ours+Single shows nearly the same aver-
age quality performance as Ours+Multi. These are very natural results. When
sampling a single future trajectory, the most prominent mode will be chosen for
the sampling. Therefore, Ours+Multi and Ours+Single will show the same
performance. On the other hand, when sampling multiple future trajectories, the
trajectories generated by Ours+Multi will better reflect the true future trajec-
tory distribution. Therefore, Ours+Multi will outperforms Ours+Single in
terms of the best quality.

E Implementation Details

E.1 Candidate Lanes Acquisition

We identifyM = 10 lane candidates for each target vehicle based on the method
proposed in [5, 8, 10]. The lane segments within the search radius (10 meters)
from the current position of the vehicle are first found. Next, lane candidates
80 meters long in the vehicle’s heading direction are obtained by attaching the
preceding and succeeding lane segments based on lane connectivity information
provided by the HD maps. The set of coordinate points for the lane candidates
is re-sampled such that any two adjacent coordinate points have equal distance
(1 meter). The ground-truth lane on which the target vehicle has moved during
the future timesteps is identified by the Euclidean distance between the ground-
truth future trajectory and the lane candidates. If the number of the identified
lane candidates is less than M , we add fake lane candidates with coordinate
points of (0, 0). If the number is greater than M , M −1 randomly selected lanes
and the ground-truth lane are used.

E.2 Details of Our Implementation

Preprocessing: Let pt
i = (ptx, p

t
y) denote the position of the vehicle Vi at t.

The speed s (meter per second) and heading h (radian) of the vehicle at t are
calculated as follows:

s = ψ
√
(ptx − pt−1

x )2 + (pty − pt−1
y )2, (4)

h = arctan (
pty − pt−1

y

ptx − pt−1
x

), (5)

where ψ is the sampling rate. Let lmf denote the coordinate of the f -th point of
the lane Lm. The tangent vector vf = (vf,x, vf,y) and its direction dvf

at the
point are calculated as follows:

vf = lmf − lmf−1 (6)

dvf
= arctan (

vf,y − vf−1,y

vf,x − vf−1,x
). (7)
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Feature Extraction Module: The positional data Xi, Yi, and Lm are first
preprocessed by the method proposed in this paper. Next, the data are embedded
by single-layer MLPs followed by ReLU activation. The MLPs for Xi and Yi

take as input a 4-dimensional vector and output a 16-dimensional vector. The
MLP for Lm takes as input a 5-dimensional vector and outputs a 64-dimensional
vector. Finally, the embedded sequential vectors are encoded by LSTM networks.
The final hidden states of the LSTM networks are used for the final encodings.
The hidden state size of the LSTM networks for Xi and Yi is 16. The hidden
state size for Lm is 64.

Scene Context Extraction Module: The attention operation between X̃i

and L̃(1:M) for the context vector ami is based on [1]. The context vector bm
i is

calculated as follows: The messages coming to the node Vi are first calculated
by a single-layer MLP followed by ReLU activation, which takes as input a 34-
dimensional vector and outputs a 16-dimensional vector, and then summarized
by the sum operation. The summarized message is used to update the hidden
state of the node. To update the hidden state, we use a GRU cell, which takes
as input a 16-dimensional vector and outputs a 16-dimensional hidden state
vector. After the one round of the message passing, bm

i is obtained by summing
the hidden states of the neighboring nodes.

Mode Selection Network: Ten lane-level scene context vectors {cmi } are first
embedded by a single-layer MLP followed by ReLU activation, which takes as in-
put a 160-dimensional vector and outputs a 64-dimension vector. The embedded
vectors are then concatenated and used as input to a single-layer MLP, which
takes as input a 640-dimensional vector and outputs a 10-dimension vector, to
obtain the latent vector zh.

Encoder and Prior: The encoder produces the mean and variance vectors
from the lane-level scene context vector cmi and the positional data encoding
Ỹi. We use two two-layer MLPs for the mean and variance, respectively. The
first layers of the MLPs take as input a 178-dimensional vector and output a
64-dimensional vector. The second layers take as input a 64-dimensional vector
and output a 16-dimensional vector. The prior produces the mean and variance
vectors from cmi . The networks for the prior have the same structure as those
for the encoder except that the first layers of the MLPs take as input a 160-
dimensional vector. Finally note that we use ReLU activation for the first layers
of the MLPs.

Decoder: To produce the next position p̂t+1
i , the current position p̂t

i is first
embedded by a single-layer MLP followed by ReLU activation, which takes as
input a 2-dimensional vector and output a 16-dimensional vector. Next, cmi , zl,
and the embedding are concatenated and used as input to an LSTM network,
which takes as input a 192-dimensional vector and outputs a 128-dimensional
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hidden state vector, to update the hidden state vector. The next position is
obtained by a single-layer MLP, which takes as input a 128-dimensional vector
and outputs a 2-dimensional vector.

Discriminator: The positional data [Yi;∆Yi] is first embedded by a single-
layer MLP followed by ReLU activation, which takes as input a 4-dimensional
vector and outputs a 16-dimensional vector. The embedded sequential data is
then encoded by an LSTM network, which takes as input 16-dimensional se-
quential vectors and outputs 16-dimensional sequential hidden state vectors.
The future encoding and lane encoding L̃m are then used as input to a single-
layer MLP to produce a scalar value. The MLP takes as input an 80-dimensional
vector.

Training: Adam optimizer [9] is used for the optimization with initial learning
rates of 10−4 (nuScenes) and 5 × 10−4 (Argoverse Forecasting) and batch size
of 8 for 100 (nuScenes) and 50 (Argoverse Forecasting) epochs. We evaluate the
prediction performance after every three consecutive training epochs by using the
validation samples in the training dataset. Whenever the prediction performance
improves over the past, we save the model’s network parameters. During the
training, we use a cyclical annealing schedule [7] for β.

E.3 Details of Ablation Study

We describe the details of the ablation study shown in section 4.3 of the paper.
For M1, we do not use the positional data preprocessing (PDP), VLI, V2I,
and GAN regularization proposed in the paper. As a result, the lane-level scene
context vector cmi is defined as cmi = [X̃i; L̃

m]. For M3, we use the VLI so that
cmi = [X̃i;a

m
i ]. Finally, cmi = [X̃i;a

m
i ;bm

i ] is used for M4, which employ the
VLI and V2I.

E.4 Details of Baselines

We describe the details of the baseline models shown in Figure 3 of the paper.
For the figure, we exclude the scene context extraction module and discriminator
to show how helpful the introduction of the hierarchical latent structure would
be for the mitigation of mode blur. Finally, note that the trajectories depicted
in Figure 3-(a) of the paper is generated from M2.

Baseline: We train a generative model with a latent variable to model the tra-
jectory distribution. One scene context vector ci that condenses the information
about all the modes of the distribution is first calculated as follows:

ci = [X̃i; L̃
ATT ], (8)

where L̃ATT is the result of the attention operation [1] between X̃i and L̃(1:M).
ci is then used as input to the encoder, prior, and decoder.
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Baseline+BOM: We train Baseline with the best-of-many (BOM) sample
objective [2]. During the training, we let the model generate five trajectories per
vehicle and select the trajectory with the minimum ADE out of the five for the
L2-distance loss calculation.

Baseline+NF: We train Baseline with normalizing flows (NF) [12]. We apply
ten planar flow operations to a random vector that follows the normal distribu-
tion to obtain the final latent variable.
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