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AiATrack: Attention in Attention for Transformer Visual
Tracking (Supplementary Material)

The supplementary material provides additional details about the experi-
ments and analyses of the proposed method.

1 Additional Experiment Details

1.1 Target Prediction

To make the tracking procedure in an end-to-end manner without tedious post-
processing, we adopt the anchor-free prediction head proposed in [20], which
outputs the probability maps Ptl(x, y) and Pbr(x, y) for the top-left and the
bottom-right bounding box corners. The coordinates x̂tl, ŷtl, x̂br, ŷbr of the
predicted bounding box are then obtained by

x̂tl =

H∑
y=0

W∑
x=0

x · Ptl(x, y), ŷtl =

H∑
y=0

W∑
x=0

y · Ptl(x, y) (1)

x̂br =

H∑
y=0

W∑
x=0

x · Pbr(x, y), ŷbr =

H∑
y=0

W∑
x=0

y · Pbr(x, y) (2)

1.2 Training Objective

With the predicted bounding box b̂ and predicted IoU î, the whole network is
jointly trained by minimizing prediction errors. The bounding box prediction
loss is defined as the combination of GIoU loss [16] and L1 loss. Together with
the IoU prediction loss, the loss function can be written as

L = λgiouLgiou(b, b̂) + λl1∥b− b̂∥1 + λmse(i− î)2 (3)

where b and i represent the ground truths of bounding box and IoU respectively
and λgiou, λl1, λmse are the trade-off weights.

1.3 Training Strategy

Similar to previous works [3,1,2,18,20], we utilize the training splits of LaSOT
[5], TrackingNet [15], GOT-10k [7], and COCO [12] for offline training. As for the
COCO image dataset, we apply data augmentation to generate synthetic video
clips of diverse classes. During training, we randomly sample the search frame
and reference frames such that the index of the search frame is larger than the
indexes of reference frames. For training efficiency, we only sample one frame as
the short-term reference. We also apply random affine transformations to jitter
the sizes and locations of the short-term reference frame and search frame to
simulate real tracking scenarios and avoid the influence of absolute position bias
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Fig. 1. Detailed illustration of the differences between different structures of the AiA
module.

⊗
denotes matrix multiplication and

⊕
denotes element-wise addition. The

numbers beside arrows are feature dimensions which do not include the batch size.
Matrix transpose operations are omitted for brevity.

Structure
Modification LaSOT [5] LaSOTExt [4]
LN LT IC AUC PNorm P AUC PNorm P

AiAv1 ✓ ✓ 68.7 79.3 73.7 46.8 54.4 54.2
AiAv2 68.8 79.3 73.6 46.7 54.5 53.8
AiAv3 ✓ ✓ 69.2 79.6 74.3 48.4 56.6 56.2

Table 1. Study about the different structures of the AiA module. LN denotes applying
layer normalization to the value. LT denotes applying linear transformation to the
value. IC denotes using identical connection after the correlation aggregation.

caused by padding [8,11,23]. The network is trained with the AdamW optimizer
[13]. The learning rate is 1e-5 for the network backbone and 1e-4 for the other
components. It decays by a factor of 10 during training. The parameters of the
first convolutional layer and the first stage in the ResNet-50 [6] backbone are
fixed during training.

1.4 Different Structures of the AiA Module

Besides variant (h) in the paper, we also explore other structures of the AiA
module, where the following components are studied: (1) Layer normalization
applied to the value. (2) Linear transformation applied to the value. (3) Identical
connection after the correlation aggregation. To evaluate their effect, we design
two other structures of the AiA module, i.e. AiAv2 and AiAv3. The differences
between these structures are shown in Fig. 1. Note that AiAv1 is the structure
we implement in AiATrack and AiAv3 is a typical self-attention structure in the
vanilla Transformer [17].
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Tracker
Alpha-Refine OceanPlus DualTFR STARK-ST50 AiATrack

[21] [22] [19] [20] (Ours)

EAO 0.482 0.491 0.528 0.505 0.530
Accuracy 0.754 0.685 0.755 0.759 0.764

Robustness 0.777 0.842 0.836 0.817 0.827

Table 2. State-of-the-art comparison on VOT2020.

From the results in Tab. 1, we can observe that the layer normalization and
the identical connection are not key components in our AiA module. Applying
linear transformation to the value can further improve the performance, but we
remove it for the trade-off between performance and computational cost. Besides
the observations above, all the experimental results validate the effectiveness of
correlation refinement in the conventional attention mechanism with an extra
attention module.

1.5 Results on VOT

Different from previous reset-based evaluation protocol [10], VOT2020 [9] pro-
poses a new anchor-based evaluation protocol which is more reasonable. The
same as STARK [20] and DualTFR [19], we use Alpha-Refine [21] to generate
masks for evaluation since the ground truths of VOT2020 are annotated by the
segmentation masks. The overall performance is ranked by the Expected Aver-
age Overlap (EAO). As shown in Tab. 2, our tracker exhibits very competitive
performance, outperforming STARK with a margin of 5% in terms of EAO.

2 Additional Visualization Results

2.1 Attribute Analysis

We also provide detailed attribute analysis on LaSOT [5]. Fig. 2 shows that
our tracker has an encouraging performance in various kinds of scenarios like
background clutter, camera motion, and deformation. The results suggest the
great potential of the proposed method when dealing with challenging scenarios.

2.2 Qualitative Comparisons

To qualitatively compare our tracker with the state-of-the-art trackers, we vi-
sualize our tracking results with two recent representative trackers: KeepTrack
[14] and STARK [20]. Fig. 3 shows the tracking outputs for these trackers on
some challenging video examples.
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Fig. 2. Attribute analysis on LaSOT. AUC scores are showed in the legend.
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Ground Truth                    AiATrack (Ours)                    KeepTrack STARK-ST50

Fig. 3. Qualitative comparisons with two representative state-of-the-art trackers on 8
challenging sequences: bird-17, goldfish-8, sepia-13, shark-2, sheep-3, squirrel-8, tiger-4,
turtle-8. Frame indexes are given on the top-left of each figure.
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