SUPPLEMENTARY MATERIAL FOR Disentangling Architecture and Training for Optical Flow

Deqing Sun ^{*,†} 💿	Charles Herrmann [*] 💿	Fitsum Reda 💿
Michael Rubinstein 💿	David J. Fleet 💿	William T. Freeman

Google Research

The main paper includes only several examples on the Davis datasets due to space limits. Here we provide more visual examples to more comprehensively evaluate these models visually. We also include screenshots that indicate how our method does on public benchmarks and detailed results on these benchmarks. Throughout the document, we add "-it" to each method to denote our newly trained model, where "it" stands for improved training.

1 Screenshots of Public Benchmarks

	Method	Setting	Code	Fl-bg	Fl-fg	<u>Fl-all</u>	Density	Runtime	Environment	Compare
1	CamLiFlow	ďď	code	2.31 %	7.04 %	3.10 %	100.00 %	1.2 s	GPU @ 2.5 Ghz (Python + C/C++)	
I. Liu, T.	Lu, Y. Xu, J. Liu, W. Li and L.	. Chen: CamLiFlov	v: Bidirect	ional Came	ra-LiDAR Fu	sion for Joi	nt Optical Flow	and Scene Flow Es	timation. CVPR 2022.	
2	RigidMask+ISF	бб	<u>code</u>	2.63 %	7.85 %	3.50 %	100.00 %	3.3 s	GPU @ 2.5 Ghz (Python)	
i. Yang a	nd D. Ramanan: Learning to S	Segment Rigid Mot	tions from	Two Frame	s. CVPR 202	1.				
3	DRPC	ďď		3.17 %	8.79 %	4.11 %	100.00 %	2.7 s	GPU @ >3.5 Ghz (Python)	
4	DIP			3.86 %	5.96 %	4.21 %	100.00 %	0.15 s	1 core @ 2.5 Ghz (Python)	
5	RAFT-3D	bb		3.39 %	8.79 %	4.29 %	100.00 %	2 s	GPU @ 2.5 Ghz (Python + C/C++)	
. Teed a	nd J. Deng: RAFT-3D: Scene F	low using Rigid-M	otion Emb	eddings. ar	Xiv preprint	arXiv:2012	.00726 2020.			
6	<u>LPSF</u>	ŏŏ &		3.18 %	9.92 %	4.31 %	100.00 %	60 s	1 core @ 2.5 Ghz (C/C++)	
7	<u>RAFT-it</u>			4.11 %	5.34 %	4.31 %	100.00 %	0.1 s	GPU @ 2.5 Ghz (Python)	
8	SeparableFlow		<u>code</u>	4.25 %	5.92 %	4.53 %	100.00 %	0.5 s	GPU	
		nd P. Torr: Separat	ole Flow: I						ngs of the IEEE/CVF International Conference on Co	
9	MetaFlow			4.11 %	6.77 %	4.55 %	100.00 %	0.2 s	1 core @ 2.5 Ghz (Python)	
10	KPA-Flow			4.17 %	6.77 %	4.60 %	100.00 %	0.2 s	1 core @ 2.5 Ghz (Python)	
11	RealFlow			4.20 %	6.76 %	4.63 %	100.00 %	0.2 s	8 cores @ 2.5 Ghz (Python)	
12	<u>FCTR</u>			4.45 %	5.63 %	4.65 %	100.00 %	0.2 s	GPU @ 2.5 Ghz (Python)	
13	FlowNAS-RAFT-K			4.36 %	6.25 %	4.67 %	100.00 %	0.19 s	GPU @ 2.5 Ghz (Python)	
14	UberATG-DRISF	ЪĎ		3.59 %	10.40 %	4.73 %	100.00 %	0.75 s	CPU+GPU @ 2.5 Ghz (Python)	
/. Ma, S.	Wang, R. Hu, Y. Xiong and R.	Urtasun: Deep Ri	g <u>id Instan</u>	ce Scene Fl	ow. CVPR 20)19.				
15	RAFT-A		code	4.54 %	5.99 %	4.78 %	100.00 %	0.7 s	GPU @ 2.5 Ghz (Python + C/C++)	

Fig. 1. Screenshot of KITTI 2015 public benchmark. We name our newly trained RAFT as RAFT-it, "it" stands for improved training.

Table 1 summarizes the detailed results by previously published and our newly trained models. The newly trained models are more accurate than previ-

^{*}Equal technical contribution, [†]project lead.

2 Sun *et al.*

RAFT-it ^[17]	1.554	0.612	9.242	1.664	0.514	0.273	0.287	0.971	9.261	Visualize Results
RAFTwarm+OBS [18]	1.593	0.600	9.692	1.532	0.507	0.309	0.300	0.989	9.470	Visualize Results
RAFTv2-OER-warm-start [19]	1.594	0.625	9.487	1.567	0.512	0.339	0.328	1.014	9.271	Visualize Results
RAFT [20]	1.609	0.623	9.647	1.621	0.518	0.301	0.341	1.036	9.288	Visualize Results
NASFlow-RAFT [21]	1.613	0.503	10.664	1.339	0.405	0.238	0.298	0.892	9.883	Visualize Results
CSFlow-2-view [22]	1.626	0.584	10.123	1.527	0.492	0.254	0.330	1.015	9.539	Visualize Results
NASFlow [23]	1.629	0.639	9.708	1.616	0.540	0.334	0.306	1.001	9.718	Visualize Results
L2L-Flow-ext-warm [24]	1.648	0.622	10.017	1.641	0.516	0.282	0.342	1.018	9.657	Visualize Results
RAFT+NCUP [25]	1.661	0.678	9.666	1.872	0.541	0.302	0.371	1.102	9.402	Visualize Results

Fig. 2. Screenshot of Sintel clean public benchmark. We name our newly trained RAFT as RAFT-it, "it" stands for improved training.

SCAR [26]	2.882	1.391	15.038	3.101	1.145	0.773	0.651	1.759	16.665	Visualize Results
C1 [27]	2.884	1.436	14.696	3.050	1.199	0.821	0.608	1.786	16.833	Visualize Results
RAFT-it ^[28]	2.896	1.407	15.027	2.811	1.157	0.882	0.510	1.701	17.622	Visualize Results
RFPM [29]	2.901	1.331	15.698	2.732	1.063	0.811	0.535	1.602	17.779	Visualize Results
L2L-Flow-ext [30]	2.954	1.392	15.684	3.059	1.158	0.822	0.649	1.823	17.125	Visualize Results
FCTR [31]	2.979	1.323	16.489	2.963	1.103	0.760	0.664	1.815	17.290	Visualize Results
MF2C [32]	2.980	1.484	15.191	3.187	1.281	0.978	0.692	2.060	16.560	Visualize Results
CSFlow-2-view [33]	3.025	1.445	15.914	3.061	1.125	0.877	0.622	1.881	17.720	Visualize Results
MFFC [34]	3.029	1.517	15.363	3.135	1.189	0.916	0.621	1.812	17.929	Visualize Results
RAFT+OBS [35]	3.104	1.487	16.286	3.107	1.153	0.964	0.657	1.940	18.061	Visualize Results
RAFT-A [36]	3.137	1.590	15.762	3.153	1.270	1.032	0.534	1.956	18.912	Visualize Results

Fig. 3. Screenshot of Sintel final public benchmark. We name our newly trained RAFT as RAFT-it, "it" stands for improved training. RAFT-it is only slightly worse than SeparableFlow on Sintel.final among all published two-frame methods.

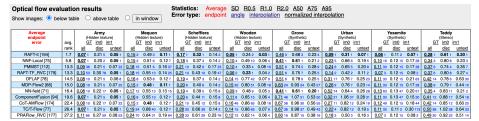


Fig. 4. Screenshot of Middlebury public benchmark (AEPE). We name our newly trained RAFT as RAFT-it, "it" stands for improved training. RAFT-it sets a new state of the art on Middlebury.

ously models regardless of occlusions (unmatched), distance to motion boundaries, and speed.

Table 2 summarizes the detailed results on KITTI for the previously best published and the newly trained models. The newly trained models are generally better than the previously trained models. The only exception is the foreground regions for IRR-PWC. Note that the original IRR-PWC implementation computes bidirectional flow, reasons about occlusions, and uses a bilateral refinement, which may help the foreground objects. Our newly trained IRR-PWC

Model	all	match	unmatch	d0-10	d10-60	d60-140	s0-10	s10-40	s40+
PWC-Net	4.60	2.25	23.70	4.78	2.05	1.23	0.95	2.98	26.62
PWC-Net-it (ours)	3.68	1.82	18.87	3.47	1.39	1.18	0.62	1.96	23.07
IRR-PWC	4.58	2.15	24.36	4.17	1.84	1.29	0.71	2.42	29.00
IRR-PWC-it (ours)	3.56	1.83	17.54	3.67	1.40	1.16	0.63	2.04	21.63
RAFT [1]	3.14	1.59	15.76	3.15	1.27	1.03	0.53	1.96	18.91
RAFT-it (ours)	2.90	1.41	15.03	2.81	1.16	0.88	0.51	1.70	17.62
Table 1. Detailed a	nalys	sis of AI	EPE on Sin	tel test	set. "it"	' stands fo	or impr	oved tr	ain-
ing.									

is a straightforward modification of PWC-Net and is more lightweight without these sophisticated modules.

Model		All		Occ				
Model	Fl-bg	Fl-fg	Fl-all	Fl-bg	Fl-fg	Fl-all		
PWC-Net [2]	9.66~%	9.31~%	9.60~%	6.14~%	5.98~%	6.12~%		
PWC-Net [3]	7.69~%	7.88~%	7.72~%	4.91~%	4.88~%	4.91%		
PWC-Net-it (ours)								
IRR-PWC					4.62~%			
IRR-PWC-it (ours)	5.12~%	8.82~%	5.73~%	3.47~%	5.95~%	3.92~%		
RAFT [4]	4.74~%	6.87~%	5.10~%	2.87~%	3.98~%	3.07~%		
RAFT $[1]$	4.54~%	5.99~%	4.78~%	3.01~%	3.17~%	3.04%		
RAFT-it (ours)	4.11 %	5.34~%	4.31~%	2.68~%	2.77~%	2.70~%		

 Table 2. Detailed performance on KITTI 2015 test set. "it" stands for improved training.

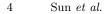
2 More Visual Comparisons

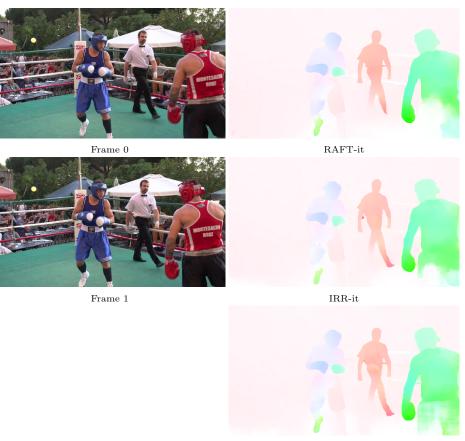
2.1 PWC-it, IRR-it, and RAFT-it on Davis 2K

In this subsection, we include 4 examples of our improved training models on Davis 2K images: Figures 5, 6, 7, and 8.

2.2 PWC-it, IRR-it, and RAFT-it (down-up) on Davis 4K

In this subsection, we include 4 examples of our improved training models on Davis 4K images: Figures 9, 10, 11, and 12. Note that due to memory constraints, RAFT-it requires the input to be downsampled and then the output flow to be upsampled to 4K.





PWC-Net-it

Fig. 5. PWC-it, IRR-it, and RAFT-it on Davis 2K images.

2.3 Old vs New for PWC and RAFT on Davis 448x864

In this subsection, we include 8 examples of two-frame optical flow from PWCoriginal, RAFT-original, PWC-it, and RAFT-it evaluated on Davis images with resolution 448 by 864: Figures 13.

2.4 Old vs New for PWC and RAFT on Viper 1080x1920

In this subsection, we include 3 examples of two-frame optical flow from PWCoriginal, RAFT-original, PWC-it, and RAFT-it evaluated on Viper validation images with resolution 1080 by 1920: Figures 14.

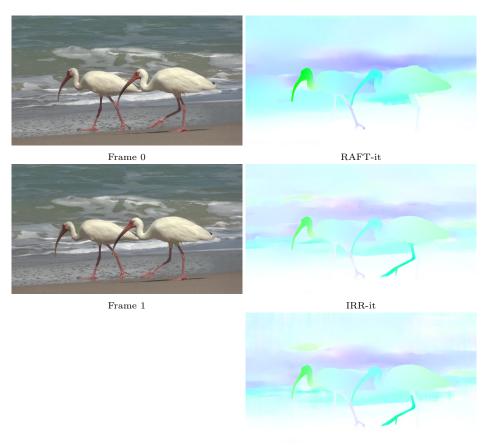
PWC-Net-it

Fig. 6. PWC-it, IRR-it, and RAFT-it on Davis 2K images.

References

- Sun, D., Vlasic, D., Herrmann, C., Jampani, V., Krainin, M., Chang, H., Zabih, R., Freeman, W.T., Liu, C.: Autoflow: Learning a better training set for optical flow. In: CVPR (2021)
- Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In: CVPR (June 2018)
- 3. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Models matter, so does training: An empirical study of cnns for optical flow estimation. IEEE TPAMI (2019)
- 4. Teed, Z., Deng, J.: RAFT: Recurrent all-pairs field transforms for optical flow. In: Proc. ECCV (2020)

6 Sun *et al.*

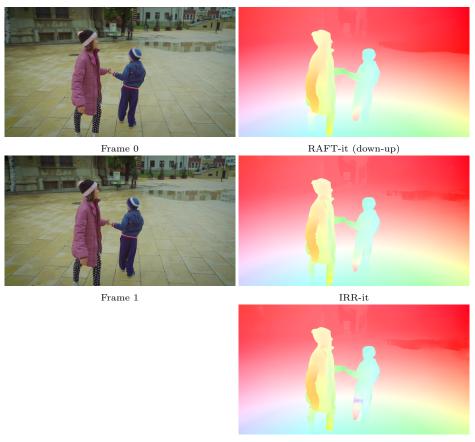


PWC-Net-it

Fig. 7. PWC-it, IRR-it, and RAFT-it on Davis 2K images.

Fig. 8. PWC-it, IRR-it, and RAFT-it on Davis 2K images.

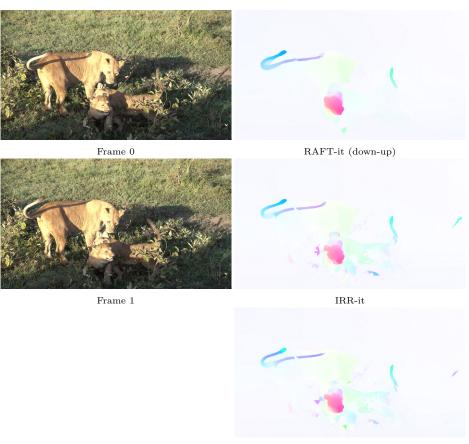
8 Sun *et al.*



PWC-Net-it

Fig. 9. PWC-it, IRR-it, and RAFT-it (down-up) on Davis 4K images. Note that RAFT-it requires the input images to be downsampled due to memory requirements and then the flow upsampled. Note the higher level of detail in IRR-it and PWC-Net-it: the clothes on the person on the left.

Fig. 10. PWC-it, IRR-it, and RAFT-it (down-up) on Davis 4K images. Note that RAFT-it requires the input images to be downsampled due to memory requirements and then the flow upsampled. Note the higher level of detail in IRR-it and PWC-Net-it: the biker's brim, the pant leg, etc.



PWC-Net-it

Fig. 11. PWC-it, IRR-it, and RAFT-it (down-up) on Davis 4K images. Note that RAFT-it requires the input images to be downsampled due to memory requirements and then the flow upsampled. Note the higher level of detail in IRR-it and PWC-Net-it: plant in front of the front lion.

PWC-Net-it

Fig. 12. PWC-it, IRR-it, and RAFT-it (down-up) on Davis 4K images. Note that RAFT-it requires the input images to be downsampled due to memory requirements and then the flow upsampled. Note the higher level of detail in IRR-it and PWC-Net-it: the plants in the foreground.

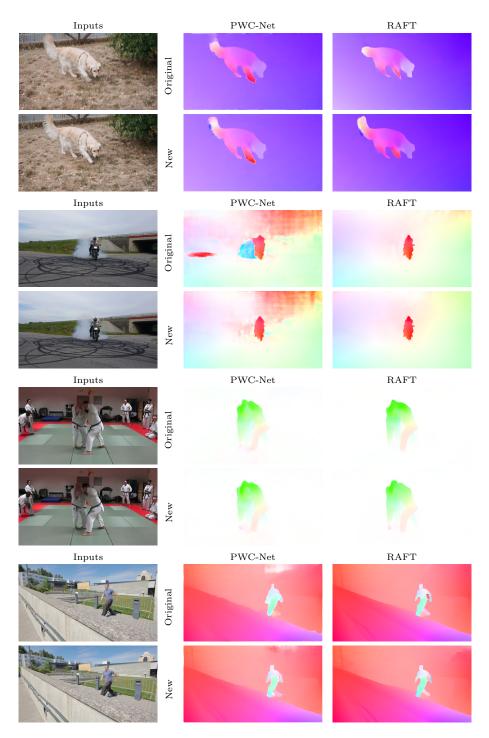


Fig. 13. PWC-orig, RAFT-orig vs PWC-it, RAFT-it on Davis 448x864

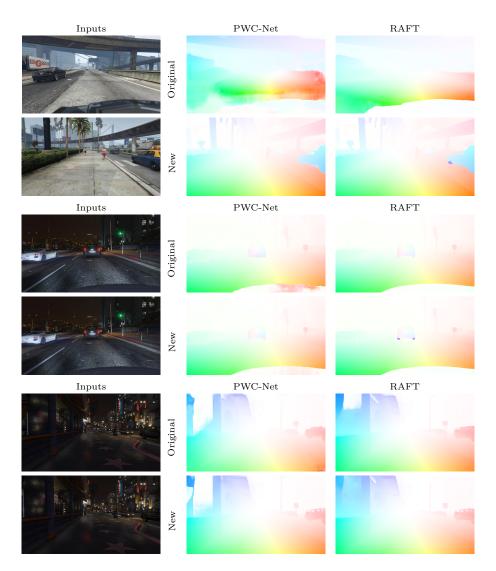


Fig. 14. PWC-orig, RAFT-orig vs PWC-it, RAFT-it on Viper 1080x1920