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Abstract. In clinical procedures of angioplasty (i.e., open clogged coro-
nary arteries), devices such as balloons and stents need to be placed and
expanded in arteries under the guidance of X-ray fluoroscopy. Due to
the limitation of X-ray dose, the resulting images are often noisy. To
check the correct placement of these devices, typically multiple motion-
compensated frames are averaged to enhance the view. Therefore, device
tracking is a necessary procedure for this purpose. Even though angio-
plasty devices are designed to have radiopaque markers for the ease of
tracking, current methods struggle to deliver satisfactory results due to
the small marker size and complex scenes in angioplasty. In this pa-
per, we propose an end-to-end deep learning framework for single stent
tracking, which consists of three hierarchical modules: a U-Net for land-
mark detection, a ResNet for stent proposal and feature extraction, and
a graph convolutional neural network for stent tracking that temporally
aggregates both spatial information and appearance features. The exper-
iments show that our method performs significantly better in detection
compared with the state-of-the-art point-based tracking models. In ad-
dition, its fast inference speed satisfies clinical requirements.

Keywords: Stent enhancement, Landmark tracking, Graph neural net-
work

1 Introduction

Coronary artery disease (CAD) is one of the primary causes of death in most de-
veloped countries [19]. The current state-of-the-art treatment option for blocked
coronary arteries is the percutaneous coronary intervention (PCI) (Fig. 1). Dur-
ing this minimally invasive procedure, a catheter with a tiny balloon (the tracked
dark object in Fig. 1c) at the tip is put into a blood vessel and guided to the
blocked coronary artery. Once the catheter arrives at the right place, the bal-
loon is inflated to push the artery open, restoring room for blood flow. In most
cases, a stent, which is a tiny tube of wire mesh (Fig. 1), is also placed in the
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Fig. 1. Examples of stent tracking with the proposed method (a,c) and stent enhance-
ment based on the tracking results (b,d). a and c show four frames from a video.

blocked artery after the procedure to support the artery walls and prevent them
from re-narrowing. Intraoperative X-ray fluoroscopy is commonly used to check
the location of stent/balloon before expansion. However, stent visibility is often
limited (Fig. 1a and c) under X-ray because the minimal level radiation dose out
of safety concerns. Furthermore, stents keep moving rapidly with heartbeat and
breathing in the complicated environment of patients’ anatomy.

Compared to other physical approaches, such as invasive imaging or increas-
ing radiation dose, a more cost-effective solution is to enhance the stent appear-
ance through image processing (a.k.a., digital stent enhancement), as shown in
Fig. 1b and d. A common method is to track the stent motion, separate the
stent layer from the background layer, and average the stent layers from mul-
tiple frames after motion compensation. Stent tracking is achieved by tracking
two radiopaque balloon markers that locate at two ends of the stent (Fig. 1).

Stent tracking for enhancement remains quite challenging due to multiple
reasons. First, the balloon markers are very small compared to the whole field
of view (FOV) while the movements are large. Second, the scenes in PCI proce-
dures are very complex: organs and other devices can form a noisy background
and 3D organs and devices can be projected into different 2D images from dif-
ferent angles. Third, stent enhancement requires high localization accuracy and
low false positives. Fourth, fast tracking speed is needed to meet the clinical re-
quirements (e.g., 15fps for a 512x512 video). Fifth, data annotations are limited
just like other medical imaging applications.

Current stent tracking methods lie under the tracking-by-detection category
and assume only one stent presents in the FOV. They first detect all possi-
ble radiopaque balloon marker from each frame, and then identify the target
stent track based on motion smoothness [2,3] or consistency score [14,23]. How-
ever, these methods are prone to large detection and tracking errors caused by
strong false alarms. Deep learning techniques dramatically improve detection
and tracking accuracy. However, it is difficult to apply these techniques to the
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stent tracking problem because of the the small object size and complex PCI
scenes and overfitting issue on small dataset. Therefore, we tackle the above
issues by incorporating some basic prior knowledge into our framework design.
For example, the stent has distinctive hierarchical features: two dark markers
that can be detected by low-level features and complicated patterns between the
marker pairs, such as wire, mesh and balloon tubes, to be recognized from high-
level semantic analysis. Additionally, the association of marker pairs in different
frames requires long temporal dimension reasoning to tolerate inaccurate detec-
tions in certain frames with limited image quality. Moreover, most deep learning
frameworks for keypoint tracking problems (such as human pose tracking) train
detection and tracking modules separately. However, it is generally harder to
detect small markers from a single X-ray image than keypoints from natural
images due to the limited object features and complex background.

Therefore, we propose an end-to-end trainable deep learning framework that
consists of three hierarchical modules: a landmark detection module, which is
a U-Net [21] trained with small patches to detect potential balloon markers
with local features; a stent proposal and feature extraction module, which is
a ResNet [11] trained with larger stent patches to extract high-level features
located between detected marker pairs; and a stent tracking module, which is
a graph convolutional neural network (GCN) to associate marker pairs across
frames using the combination of extracted features and spatial information. Our
ablation study demonstrated that end-to-end learning of the whole framework
can greatly benefit the performance of final stent tracking. For example, detec-
tor can be boosted by incorporating the feedback from trackers by learning to
suppress some false positives that cause bad outcome in trackers.

In summary, the major contributions of this paper are as follows: 1) We pro-
pose the first deep learning method, to our best knowledge, to address the single
stent tracking problem in PCI X-ray fluoroscopy. 2) To handle the challenge of
tracking small stents in complex video background, we propose an end-to-end
hierarchical deep learning architecture that exploits both local landmarks and
general stent features by CNN backbones and achieves spatiotemporal associa-
tions using a GCN model. 3) We test the proposed method and several other
state-of-the-art (SOTA) models on both public and private datasets, with hun-
dreds of X-ray fluoroscopy videos, data of a scale that has not been reported
before. The proposed method shows superior landmark detection, as well as
frame-wise stent tracking performance.

2 Related Work

2.1 Digital Stent Enhancement

The digital stent enhancement (DSE) algorithm typically follows a bottom-up
design and can be generally divided in to 4 main steps: landmark detection,
landmark tracking, frame registration, and enhanced stent display.

First, the region of interest needs to be located from each frame. Due to
the limited visibility of stent and large appearance variation between folded and
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expanded stents, it is challenging to extract the stent directly. Instead, potential
landmarks such as the radiopaque balloon marker pairs at two ends of the stent
or the guidewire in between is more commonly used to indicate the location
of the stent. Throughout the X-ray image sequence, the stent location is con-
stantly changing with cardiac and breathing motions. Based on the landmark
candidates, the most promising track needs to be identified to associate the tar-
get stent across frames. Next, frames can be registered based on motion inferred
by the landmark trajectory. The motion compensation is often performed by
aligning tracked landmarks together using rigid registration [15,7] or elastic reg-
istration [2]. To enhance stent visualization, the stent layer is extracted while
the background is suppressed [8].

2.2 Balloon Marker Detection

Two markers on the balloon used to deliver the stent are considered the most
prominent feature of the stent structure due to the consistent ball shape and
radio-opacity from high absorption coefficient. Various strategies are previously
studied to achieve efficient balloon marker detection.

Conventional image processing methods are applied, including match filter-
ing or blob detection, to extract candidate markers from the X-ray image. Bis-
muth et al.[3] proposed a method involving a priori knowledge and dark top hat
preprocessing to detect potential markers from local minimum selection. Blob
detectors [18,13,23] locate markers by differentiating regions with unique charac-
teristics from neighborhood, such as brightness or color. However, the extremely
small size of balloon markers and common noises from the background, such as
guidewire tips, Sharp bone edges and other marker-like structure, make those
methods prone to a high false positive rate.

Learning-based methods are also proposed to incorporate more extended con-
text information for better markers localization. Lu et al.[14] used probabilistic
boosting trees combining joint local context of each marker pair as classifiers
to detect markers. Chabi et al.[6] detected potential markers based on adaptive
threshold and refined detections by excluding non-mask area using various ma-
chine learning classifiers, including k-nearest neighbor, naive Bayesian classifier,
support vector machine and linear discriminant analysis. Vernikouskaya et al.[21]
employed U-Net, a popular encoder-decoder like CNN designed specifically for
medical images, to segment markers and catheter shafts during pulmonary vein
isolation as binary masks. The maker segmentation performances from the above
methods are still limited by the super imbalance between foreground and back-
ground areas. Moreover, all the candidate refinements only focus on considering
more local context information at single frame, while the temporal correlation
has never been exploited to enhance the classifiers.

In our work, balloon marker detection is considered as a heatmap regression
task, which has shown superior performances in other landmark detection appli-
cations, such as face recognition [25], human pose estimation [20] and landmark
detection in various medical images [10,1]. To obtain potential markers, we use
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U-Net as the heatmap regression model, which represents each landmark as a
2D Gaussian distribution for more accurate localization.

2.3 Graph Based Object Tracking

Given the set of marker candidates across X-ray image sequence, either a priori
motion information [3] or a heuristic temporal coherence analysis [14], which
calculates consistency score between frames base on predefined criteria, is used
to identify the most prominent landmark trajectory. Wang et al.[23] proposed
a offline tracking algorithm as graph optimization problem, by constructing a
trellis graph with all the potential marker pairs and then employed the Viterbi
algorithm to search the optimal path across frame from the graph. Similar graph
models are also applied to other general object tracking tasks [22,5,16] as min-
cost flow optimization problem. However, these static graph models will fail
when the information contained by nodes or edges is not representative enough
or outdated. Brasó et al.[4] demonstrated superior results in multiple object
tracking by constructing a dynamical graph of object detections and updating
node and edge features using GCN.

In this work, we first interpret the whole video into a graph, where the nodes
are associated with encoded appearance features of potential stent from marker
pair detections and edges are temporal coherency across frames. A graph neural
network is trained as a node classification model to update both node and edge
features via message passing. The stent tracking is achieve by learning both
context and temporal information.

To our knowledge, the proposed CNN-GCN based DSE algorithm is the
first deep learning model to achieve robust balloon marker tracking and 2D
stent visual enhancement by incorporating both extended context and temporal
information.

3 Approach

In this work, we propose an effective end-to-end trainable framework for land-
mark based stent/balloon tracking (Fig. 2) with a hierarchical design: a U-Net
based landmark detection module that generates a heatmap to localize marker
candidates with local features, a ResNet based stent proposal and feature ex-
traction module to extract global stent features in a larger context, and a GCN
based stent tracking module to identify the real stent by temporally reasoning
with stent features and marker locations.

3.1 Landmark Detection

In landmark based stent/balloon detection, each candidate object is represented
by a detected landmark pair: Oi = (DL

i1,DL
i2). The first step is to detect land-

marks from each frame using a U-Net [21]. In contrast to conventional object
detection, the major challenge of landmark detection is the highly unbalanced
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Fig. 2. The proposed end-to-end deep learning framework for stent tracking.

foreground/background ratio, as landmarks are commonly tiny dots of few pix-
els compared to the frame size. Therefore, we treat landmark detection as a
heatmap regression problem and pretrain the detector with smaller positive
landmark patches, thus to increase fore-to-background ratio. The input video
V ∈ RT×H×W×C is fed into the landmark detector (U-Net) that generates
heatmapsH ∈ RT×H×W , where detected landmarks are represented as 2D Gaus-
sian distributed points. From a predicted heatmap, peak points are extracted
as landmark detections, represented as 2D coordinates and a confidence score:
DL

i = (xL
i , y

L
i , s

L
i ). During training, an false negative regularization(Sec 3.4) is

implemented to further enforce the detector to focus on landmarks.
With an ideal landmark detection, the target stents can be directly located by

landmarks and tracked over time with simple temporal association. However, due
to the lack of extended context information for perfect landmark localization, the
landmark detector is inevitably limited by a high false positive rate which further
hinders stent tracking. Hence, we proposed a delicate pipeline to simultaneously
refine object detection and tracking.

3.2 Stent Proposal & Feature Extraction

Given a set of landmark detections DL
t at frame (t), candidate objects can

be formed by all possible combination of landmark pairs Ot = {(DL
ti,DL

tj) |
DL

ti,DL
tj ∈ DL

t }, where DL
ti,DL

tj denote the ith and jth Landmark Detections

in DL
t at frame (t). As the landmark pair is always located at two ends of the

corresponding object, We can assign a confidence score to the candidate object
using the average of landmark confidence scores:

SO
i =

1

2
(SL

i1 + SL
i2). (1)
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We can generate a rectangular bounding box for the object based on the land-
mark locations, of which the center is the middle point of the landmark pair and
side lengths are the distance between the landmarks along the corresponding
axis. A ResNet is used to extract appearance features of candidate objects. The
outputs of ResNet at multiple levels within the corresponding bounding boxes
were averaged and stored into a D-dimension feature vector x(0) ∈ RD for each
candidate object, which are used later in GCN for temporal reasoning (Fig. 2).
In addition, to facilitate feature learning with a deep supervision, we feed the
feature vector into a fully-connected layer and use a weighted cross-entropy loss
(Lobj in Eq. 9) between the its outputs and labels indicating if the proposed
bounding box contains the object of interests.

3.3 Stent Tracking

With the object candidates at every frame, we first construct an undirected
graph G = (V, E) across all frames, where vertices V represent candidate objects
proposed by detected landmark pairs and edges E are full connections of candi-
date objects between adjacent frames. Every object at frame t is connected with
all the candidate objects at frame (t− 1) and frame (t+ 1).

The attributes of vertices are the appearance feature vectors x(0) extracted
from the feature extractor. The edge weights in the initial graph are calculated
as a weighted combination of object confidence scores and the spatial similarity
by comparing sizes, rotations and locations of objects:

wi,j =
SO
i + SO

j

2
(α1IoU(Oi,Oj) + α2AL(Oi,Oj)), (2)

where α1, α2 are weighting factors, IoU(·) is the IoU between object bounding
boxes and AL(·) measures the objects similarity by comparing angles and lengths
of the landmark pair vector, defined as:

AL(Oi,Oj)) = max(0,
|v⃗i · v⃗j |
|v⃗i||v⃗j |

− ||v⃗i| − |v⃗j ||√
|v⃗i||v⃗j |

). (3)

Here, v⃗i,v⃗j are the 2D vectors between landmark pairs of Oi and Oj .
The initialized graph is a powerful representation of the whole video for

object tracking, as the appearance features are embedded into vertices and spa-
tiotemporal relations are embedded in the edge weights. To track objects over
time, we perform node classification on the graph using a GCN, which identi-
fies the tracked objects at different frames as positive nodes of a corresponding
object class while false object detections and untracked objects are classified as
negative nodes.

The tracking model is a GCN with a full connected bypass (Fig. 2). The
GCN branch consists of a weighted graph convolution layer (wGCL) [12] and
two edge convolution layers (ECLs) [24]. Weighted graph convolution layer with
self-loop is defined as:

xi = Θ
∑

j∈N (i)∪{i}

wj,i

d̂i
x
(0)
j , (4)
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with a normalization term d̂i = 1 +
∑

j∈N (i) wj,i, where wj,i denotes the edge
weight between node j and node i.

Within an edge convolution layer, the edge features are first updated by a
FC layer with the features of corresponding vertices pairs connected with each
edge:

ei,j = hΘ(xi,xj), (5)

where hΘ is a nonlinear function with learnable parameters Θ. Then, ECL up-
dates node features by the summation of updated edge features associated with
all the edges emanating from each vertex:

xEC
i =

∑
j∈N (i)

ei,j . (6)

The GCN branch effectively updates features of candidate objects by most
similar objects from adjacent frames. Moreover, a sequence of convolution layers
enables information propagation from even further frames. However, node fea-
tures solely updated from the GCN are susceptible to noisy neighborhood. For
example, if the target object is missed by the upstream detection at a certain
frame, such errors would propagate to nearby frames and thus worsen general
tracking performance. Therefore, we add a simple parallel FC bypass to the
GCN branch. In the FC bypass, all the node features are updated independently
without influence from connected nodes:

xFC
i = hΘ(x

(0)
i ). (7)

In the last layer, node features from the GCN branch xEC are enhance by
the FC bypass outputs xFC for robust object tracking.

Heatmap correction GCN results are then used to correct the heatmaps
generated in landmark detection. Specifically, we multiply heatmap values in
the a w × w window centered around a detected landmark with the maximum
probability of the graph nodes containing the marker. In this way, the landmark
detector can ignore the false positives that can be easily rejected by the GCN
model and increase detection sensitivity.

3.4 Training

The landmark detector was trained as a heatmap regression model. Since land-
mark detection results are used for object proposal, feature extraction, and graph
construction, missed landmark would cause irreversible corruption to tracking
as the missed object cannot be recovered, while false positives can be filtered
out during object proposal or node classification. We used a modified cost term
Lhm to ensure fewer false negatives, defined as:

Lhm =
λ1

N

N∑
i=0

(yi − ŷi)
2 +

λ2

N

N∑
i=0

(ReLU(yi − ŷi))
2, (8)
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where λ1, λ2 are weighting factors, yi, ŷi are pixel intensities from ground truth
and predicted heatmap (corrected by GCN outputs), respectively.

The feature extractor and GCN tracking model are trained as classifica-
tion problems. We use weighted cross entropy as the cost function to handle
the unbalanced labels (most object candidates are negative), which is defined

as −
∑C

i=1 wipi log(p̂i), where p, p̂ denote the ground truth and predicted ob-
ject/node class, respectively, and wi is the predefined weight for class i.

Taken together, the total loss for end-to-end training is

L = Lhm + αLobj + βLnode, (9)

where Lobj and Lnode are weighted cross entropy losses for object classification
and node classification respectively.

4 Experiments

4.1 Datasets

Our in-house stent dataset consists of 4,480 videos (128,029 frames of 512 ×
512 8-bit frames) acquired during PCI procedures. The data acquisition was
approved by Institutional Review Boards. For in-house videos, the landmarks
are radiopaque balloon marker pairs located at two ends of the stent (Fig. 1).
There are 114,352 marker pairs in the dataset, which were manually annotated
by trained experts. The dataset was split into training, validation, and testing
set with a 8:1:1 ratio, which resulted in 3584 videos (103892 frames), 448 videos
(12990 frames), and 448 videos (11147 frames) respectively.

In addition, to verify generalization of our method, we included a public
dataset in our experiment. The transcatheter aortic valve implantation (TAVI)
dataset is a public intraoperative aortography X-ray imaging dataset including
35 videos of 1000×1000 pixels 8-bit frames. The original dataset consisted of 11
keypoint annotations including 4 anatomical landmarks, 4 catheter landmarks
and 3 additional background landmarks. TAVI is different from PCI procedure
but it contains landmark pairs: Catheter Proximal (CP) and Catheter Tip (CT)
whose constellations are similar to the stents. We excluded irrelevant landmarks
resulting the final TAVI dataset contains 2,652 frames from 26 videos. The TAVI
dataset was randomly divided into a training set with 2,027 images from 18
videos and a test set with 625 images from 8 videos. We ran K-fold (k=5) cross-
validation for all models on both private dataset and the TAVI dataset, and the
detailed results are reported in the Supplementary Materials.

4.2 Comparative Models

To demonstrate the efficacy of our algorithm, we compared it with several SOTA
models on both datasets. First, we selected two coordinate regression models,
ResNet V2 [11] and MobileNet V2 [17]. Such regression models detect landmarks
in each frame by predicting the landmark center coordinates, which have shown



10 L. Huang et al.

superior performance regressing TAVI catheter landmarks in [9]. Moreover, we
include a center based multi-object tracking (MOT) model, CenterTrack [27],
with two most powerful backbones: DLA-34 [26] and MobileNet V2. CenterTrack
detects objects as heatmap regression of centers and simultaneously tracks ob-
jects over time by predicting the translations of center points between adjacent
frames. CenterTrack has demonstrated extraordinary performance on various
MOT benchmark datasets.

4.3 Evaluation Metrics

As our final goal is to enhance the stents by aligning landmark points across
frames, detection success rate and localization accuracy are the most impor-
tant factors to ensure high-quality enhancement. To compare the landmark
prediction performance, we use the following detection and localization met-
rics for evaluation. For detection performance, we used Precision, Recall, F1

and Accuracy. Landmark locations extracted from heatmaps were paired with
the closest ground truth(GT) greedily. A stent prediction was matched if dis-
tances of its both landmarks to paired GT were smaller than 5pxs(in-house) or
15pxs(TAVI).

Precision =
TP

TP + FP
; Recall =

TP

TP + FN

F1 =
2 · TP

2 · TP + FN + FP
; Accuracy =

TP + TN

TP + FN + TN + FP

On the successfully detected landmarks, we also evaluated landmark local-
ization accuracy using pixel-wise MAE and RMSE:

MAE =
1

N

N∑
i=1

|pi − p̂i|; RMSE =

√√√√ 1

N

N∑
i=1

(pi − p̂i)2,

where pi, p̂i denote predicted and ground truth landmark coordinates.

4.4 Implementation Details

All deep learning models were implemented with PyTorch and run on NVIDIA
V100. For the proposed method, the marker detection module was pre-trained
on 128 × 128 image patches, and then the whole model was trained on 10-
frame video clips. We used Adam optimizer with a learning rate of 1e-5. For
the coordinates regression models, we follow the multi-task learning schemes
provided by Danilov et al. [9], using Binary Cross Entropy for the classification
branch and Log-Cosh loss for the regression branch, optimized with Adam with a
learning rate of 1e-5. Similarly for CenterTrack, we trained the models based on
the configuration described in the original publication. The major modification
we made was to remove the branch of object bounding box size regression since
we do not need the landmark size estimation for our task. We used the focal loss
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Table 1. Evaluations on In-house Dataset. CR means coordinate regression model,
and CT means CenterNet. ↑ indicates that higher is better, ↓ indicates that lower is
better.

Model Detection Localization
Type Backbone Precision↑ Recall↑ F1↑ Accuracy↑ MAE↓ RMSE↓

CR
MobileNetV2 0.620 0.557 0.587 0.415 1.172 1.283
ResNetV2 0.618 0.604 0.611 0.440 1.064 1.125

CT
MobileNetV2 0.485 0.932 0.638 0.469 0.455 0.837

DLA34 0.591 0.936 0.725 0.568 0.398 0.748

Ours 0.907 0.908 0.908 0.831 0.597 0.963

Table 2. Evaluations on TAVI Dataset.

Model Detection Localization
Type Backbone Precision↑ Recall↑ F1↑ Accuracy↑ MAE↓ RMSE↓

CR
MobileNetV2 0.839 0.735 0.784 0.644 12.904 14.129
ResNetV2 0.857 0.846 0.851 0.741 11.571 12.490

CT
MobileNetV2 0.785 0.961 0.864 0.761 5.100 6.159

DLA34 0.868 0.930 0.898 0.815 5.418 6.357

Ours 0.918 0.957 0.938 0.882 5.975 6.831

for heatmap regression and L1 loss for offset regression, optimized with Adam
with learning rate 1.25e-4. Please see the supplementary material for more details
on hyperparameters.

5 Results and Discussion

5.1 Main Results

Table 1 and Table 2 list the results of proposed model and baseline models on
the in-house dataset and the public TAVI dataset 4. The results are consistent
on both datasets. In terms of detection, our framework significantly outperforms
the prior state of the art on both datasets. Firstly, tracking models generally
excels pure detection models as the additional temporal information is helpful
to enhance landmark detection. Another major limitation of the coordinate re-
gression models is that the number of detections is always fixed. Therefore, some
targeted landmarks can be easily overwhelmed by strong background noises in
coordinate regressor, resulting in a common trend of lower recall. On the con-
trary, heatmap regression models have the flexibility to predict more possible
landmarks as long as the desired features are identified from the image. This
would help achieve higher recall but also resulting in a large number of false pos-
itive landmark detections, indicated as the worse CenterTrack precision values
compared to coordinate regressors. To solve this issue, in our framework design,

4 Example of stent tracking and enhancement comparisons are included in the Sup-
plementary Materials.
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we introduced both additional spatial information and temporal information to
refine the noisy preliminary detections.

As tracking models, the proposed model shows a remarkable detection margin
over CenterTrack. The results demonstrate the effectiveness of our two major
innovation in the framework: stent proposal and GCN-based tracking. Instead of
tracking multiple landmarks as individual points as in CenterTrack, our model
enhanced the isolated detections by introducing stent proposal stage. The feature
of possible stents patches between candidate landmark pairs enables the model
to enhance landmarks learning and context relationship between landmark pairs.
Moreover, as a pure local tracking model, landmarks association of CenterTrack
is limited to adjacent frames, where the landmark association is simply learnt
as spatial displacements. The information propagation of our multi-layer GCN
model enables stent feature nodes in graph, with the combination of both spatial
and appearance features, to interact with other nodes in longer time range. We
will further prove the effectiveness of our designs in the following ablation studies.

To compare two datasets, our in-house dataset includes more videos with
more complicated background compared to the TAVI dataset, which makes the
stent tracking a more challenge task for all models, with more likely false positive
detections. From the results, we could observe the notable declines in in-house
dataset detection metrics, especially in precision, for each model compared to
TAVI’s. However, the precision of our framework only dropped from 0.918 to
0.907, which indicates that our framework is more robust to suppress false pos-
itives and maintain high accuracy detection in more complex PCI scenes. This
robustness advantage is a good reflection of our hierarchical landmark and stent
feature extraction efficacy at the stent proposal stage. Even though more com-
plicated background would cause confusion to individual landmark detection,
our model can still successfully target the desired landmark pairs by identifying
the prominent stent feature in between.

As for localization evaluation, the MAE and MSE values we got from TAVI is
about 10 times larger than our own dataset. This is because, firstly, the original
frame size is significantly larger than our data; secondly, the landmarks in TAVI,
CP and CD, are also about 10 times larger than our landmarks. For example,
the CD landmarks are more of a dim blob rather than a single opaque point as in
our dataset. To compare the results among models, heatmap regression models
perform generally better than coordinate regression models, as the numerical
regression still remain an quite arbitrary task for CNN model and localization
accuracy would be diminished during the single downsampling path in regres-
sors. CenterTrack achieves the lowest MAE and MSE errors on both datasets.
The high accurate localization of CenterTrack is realized by both sophisticated
model architecture and the additional two-channel output branch specifically de-
signed for localization offsets regression. The cost for the localization accuracy
improvement is computational complexity and time (CenterTrack-DLA34: 10.1
FPS). As for our model, the localization solely depends on the heatmap regres-
sion from the faster U-Net (21.7 FPS). We have not tried to add any localization
refinement design for the framework efficiency. On our dataset, the mean MAE
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Table 3. Ablation study on In-house Dataset.

Model
Detection Localization

Precision↑ Recall↑ F1↑ Accuracy↑ MAE↓ RMSE↓
Detection only 0.551 0.918 0.688 0.525 0.596 0.998

Detection refinement 0.927 0.532 0.677 0.511 0.598 0.946
Separate learning 0.893 0.872 0.883 0.790 0.596 0.955

Ours 0.907 0.908 0.908 0.831 0.597 0.963

value at 0.597 is already sufficient for our final stent enhancement task. Further
localization refinement with the sacrifice of time would not cause any noticeable
improvements. However, we want to note that our framework is very flexible
that the current U-Net backbone can be replaced by any other delicate heatmap
regression models, if a more accurate localization is necessary for an application.

5.2 Ablation Studies

The proposed end-to-end learning framework consists of three major modules:
heatmap regression based landmark detection (U-Net), landmark-conditioned
stent proposal and feature extraction (ResNet), and stent tracking GCN. To
demonstrate the benefits of our framework design, we ablated the main compo-
nents of stent proposal ResNet and stent tracking GCN, as well as the end-to-end
learning regime.

Detection only directly utilizes the U-Net to detect individual landmarks
at each frame. This model only needs separate frames as inputs and individual
landmark locations as supervision.

Detection refinement improves landmark detections in the heatmap pre-
diction from the U-Net backbone and filters false positives by incorporating
additional spatial information of the stent between candidate landmarks using
a ResNet patch classifier. This two-step model also only requires single frame
inputs and no temporal association is used.

Separate Learning includes all three proposed major modules (landmark
detection, stent proposal and stent tracking). Instead of simply filtering out false
stent patches by the CNN model, this model first uses the convolution layers from
well-trained patch classification ResNet to extract feature vectors from candidate
stent patches. Then, the features are reconstructed into stent graph and fed into
the GCN model for stent tracking over frames. The final model outputs would
be the tracked stents at each frame of the input video. However, this three-step
approach is achieved by training each model independently: U-Net for landmark
detection, ResNet for stents patch classification and GCN for stent tracking.

The ablation study results are shown in Table 3. Our full end-to-end model
performs significantly better than the baselines in the detection task. The stan-
dalone U-Net yields a very high false positive rate (44.9%) as it is difficult for
this model to learn meaningful features to differentiate small landmarks from
dark spot noises in the background.
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In the detection refinement results, the stent patch classifier significantly
reduced the false positives from U-Net predictions, as precision surged to 92.7%.
However, simply applying the patch classifier to the U-Net outputs would also
filter out true stent patches with weaker patch features, resulting in a large drop
in recall. The above results indicate a trade-off between precision and recall
while applying spatial information based models.

The results of separate learning demonstrate that incorporating GCN tem-
poral stent tracking improved recall and maintained the high precision from
detection refinement, resulting in a boost in overall detection accuracy. False
negatives are effectively suppressed by the information propagation mechanism
in GCN, which helps to enhance the feature of weak but true stent nodes with
nearby strong stent nodes in both space and time.

Compared with the separate three-stage learning model, our proposed end-
to-end model achieved further improvements in all detection evaluation metrics
and reached a better balance between precision and recall. Although different
components of our framework have their specific tasks along the detection and
tracking process, the end-to-end learning brings extra benefits, especially by
optimizing the data flow between modules. For example, the back-propagated
gradients from GCN can also guide the convolutional layers at stent proposal to
extract better patch features that would be fed into GCN.

In regard to localization accuracy, all baseline models and the final model
show similar performance, as we used the same U-Net backbone for all exper-
iments. The MAE and RMSE values fluctuate within 0.002 and 0.052, which
we believe are only from experimental uncertainty and would not have a sensi-
ble influence on the final stent enhancement task. For many multi-task learning
models on limited data, there is conventionally a trade-off between excellency
on specific metrics and good overall performance. The results suggest that the
complicated multi-task learning of our end-to-end model would both maintain
high localization accuracy and improve detection.

6 Conclusion

In this work, we proposed a novel end-to-end CNN-GCN framework for stent
landmarks detection and tracking. The model includes three major modules: (1)
U-Net based heatmap regression for landmark candidate detection, (2) a ResNet
for landmark-conditioned stent proposal and feature extraction, and (3) residual-
GCN based stent tracking. We compared the proposed model with SOTA co-
ordinate regression models and multi-object tracking models. Our experiments
demonstrated that the proposed model remarkably outperformed previous SOTA
models in stent detection. We further discussed the flexibility of the proposed
framework to accommodate new heatmap regression backbones to overcome the
current localization limitations. The ablation experiments showed the benefits of
our novel designs in stent proposal ResNet, stent tracking GCN, and end-to-end
learning scheme.
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