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Abstract. In this supplementary material, we first introduce the net-
work details and the training details, and then further evaluate and dis-
cuss the runtime of our compression and decompression framework. We
also visualize the comparison results of our method and the baseline
methods with the error bar in three different datasets (KITTI, Oxford,
and Campusl6) and exhibit the detection performance in the KITTI
detection dataset.

1 Compression Framework

Our proposed framework is the first to apply the entropy model in point cloud
compression based on the range image. And we find that the neural network is
suitable for the coarse range image prediction and refinement. Compared with
the RGB image compression technologies, our proposed framework doesn’t alter
the original data and achieves better performance using the geometry features.
From the experiments of the SOTA OctSqueeze[2], we can find that directly
applying the image deep neural network into the range image cannot get good
enough results, even worse than the G-PCC and the other traditional baselines.
Also, currently, the SOTA tree-based learnable networks, like OctSqueeze[2] and
VoxelContext[4] are not open-source for reproduction. We are promised to release
our code for better usage and comparison.

2 Network Details

The RICNetgiqge1 and RICNet yqge2 contain a Minkowski Unetl4 architecture
as the 3D feature extractor, two scan-attentive feature conv (SAC) blocks as the
2D feature fusion module, and one 1D conv layer as the occupancy head or re-

finement head for two sub-models respectively. The detailed overall architecture
of the RICNet is shown in Fig.
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Fig. 1. The overall architecture of our proposed RICNet. The orange blocks are the
Minkowski Conv blocks and TransConv blocks [I], the dot lines are the skip connections,
green blocks are scan-attentive feature conv blocks, and purple blocks are the occupancy
head and the refinement head for RICNetsiage1 and RICNetsiage2 respectively. The
numbers below the blocks mean the number of the output channels, and the numbers
on the top of the blocks represent the global stride with the original block in 3D
convolution.

3 Training Details

The proposed RICNet is implemented on Pytorch and trained on an Intel 3.7GHz
i7 CPU and a single GeForce GTX 1080Ti graphics card. We use an Adam [3]
optimizer for training, in which betal=0.9, beta2=0.999, epsilon=1e-08. The
cyclical learning rates (CLR) [5] is applied for a higher training speed. In training,
the batch size is 2, and the base learning rate is 5e-4 with the cycle range as one
epoch.

4 Runtime Evaluation

In this section, we evaluate the runtime of each step of our proposed three-stage
compression and decompression framework, and the results are shown in Tab.
From the results, we can find that using the non-ground points in RICNettqge1
can save 0.06s for probability prediction.

One of our method’s drawbacks is that our method cannot be implemented
in real-time. If we need the speed of our compressor more than its compression
rate, we can choose to drop stage 0 and stage 1 in our proposed framework and
use a basic compressor (BZiP2) to encode the quantized range image from Qs.
We have tested that when we use a single basic compressor to replace the stage
0 and stage 1 (compress the quantized point cloud with ¢2), the runtime can be
reduced to 0.07 for encoding and 0.03 for decoding, though the BPP will drop
by about 0.3 (18%).

5 Additional Qualitative Results

In this section, we visualize the comparison results of our method and the base-
line methods with the error bar in three different datasets (KITTI with Velodyne
HDL-64, Oxford with Velodyne HDL-32, and Campus with Velodyne VLP-16)
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compression decompression
stage stage 0 stage 1 |stage 2| stage 0 stage 1 |stage 2
RS [bc end| net [ac enc| net RS [bc dec| net [ac dec| net

time/s 0.006 0.21 0.17 0.013 0.23 0.006 0.015 0.17 0.009 0.23

Table 1. The runtime of each step in our proposed three-stage compression and de-
compression framework. RS means the RANSAC used in ground extraction and seg-
mentation in stage 0, bc enc and bc dec are the encoding and decoding time for the
basic compressor (BZiP2), net in stage 1 and stage 2 mean the RICNetstage1r and
RICNets¢age2 respectively, ac enc and ac dec are the encoding and decoding time for
the arithmetic coding algorithm.

in Fig.|2] and exhibit the detection performance of the KITTI detection dataset

in a multi-car environment in Fig. |3|and multi-pedestrian environment in Fig.

The BPP, compression ratio and chamfer distance results of each row (method)

in these three figures are in the corresponding position of the attached table.
In this additional qualitative experiments, the settings of our method:

q1 = 03,92 = 0.1,
and the settings of the baseline algorithms:

— Draco:

qp =10,cl =T7;
— G-PCC:

Accuracy = 0.07;
— R-PCC (Uniform):

Accuracy = 0.1.

From the results, we can see that our proposed method outperforms the
state-of-the-art baseline methods in terms of the reconstruction quality and
downstream detection performance dramatically.
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Fig. 2. The qualitative results of the reconstructed point cloud with the original point
cloud. From left to right, there are three datasets: Campus with Velodyne VLP-16,
Oxford with Velodyne HDL-32, and KITTI with Velodyne HDL-64. From top to bot-
tom, there are four comparative algorithms: Draco, G-PCC, R-PCC, and Ours. The
BPP, compression ratio and chamfer distance results of each subfigure are in the cor-
responding position of Tab.

Campus Oxford KITTI

Draco 5.15 /18.62 / 0.071  5.69 / 16.87 / 0.050  2.83 / 33.83 / 0.065

G-PCC 5.42/17.71 /0.060 543 /17.68 / 0.061  3.21 / 29.88 / 0.058

R-PCC 4.18 /2292 /0.048 436 /220 /0.047 212 /4525 / 0.047
Ours 4.01 / 23.94 / 0.033 4.03 / 23.82 / 0.014 1.97 / 48.73 / 0.028

Table 2. The BPP | / compression rate T / mean chamfer distance (m)] of each
corresponding subfigure in Fig. [2 (corresponding rows and cols).
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Fig. 3. The qualitative results of the reconstructed point cloud and the detection re-
sults of KITTI/training/velodyne/000443.bin. From left to right, there are three point
clouds: reconstructed point cloud, error map with the error bar, and PointPillar de-
tection results using OpenPCDet [6]. From top to bottom, there are the original point
cloud with four comparative algorithms: Draco, G-PCC, R-PCC, and Ours. The BPP,
compression ratio and chamfer distance results of each method are in the corresponding
row of Tab. 3l

BPP | CR 1 CD |

Original 96 1 0

Draco 1.63 58.83 0.064
G-PCC 2.2 43.60 0.065
R-PCC 1.71 56.06 0.046
Ours 1.62 59.25 0.026

Table 3. The BPP, compression rate, and mean chamfer distance (m) of each corre-
sponding subfigure in Fig. [3| (corresponding rows).
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Fig. 4. The qualitative results of the reconstructed point cloud and the detection re-
sults of KITTI/training/velodyne/000571.bin. From left to right, there are three point
clouds: reconstructed point cloud, error map with the error bar, and PointPillar de-
tection results using OpenPCDet [6]. From top to bottom, there are the original point
cloud with four comparative algorithms: Draco, G-PCC, R-PCC, and Ours. The BPP,
compression ratio and chamfer distance results of each method are in the corresponding
row of Tab. [l

BPP | CR 1 CD |

Original 96 1 0

Draco 2.35 40.84 0.063
G-PCC  2.99 32.07 0.068
R-PCC  2.67 35.94 0.046
Ours 247 38.80 0.032

Table 4. The BPP, compression rate, mean chamfer distance (m) of each corresponding
subfigure in Fig. El (corresponding rows).
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