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1 More Implementation Details

Training Details. In OSTrack-256, the input sizes of templates and search
regions are 128× 128 pixels and 256× 256 pixels respectively, corresponding to
22 and 42 times of the target bounding box area. In OSTrack-384, the input
sizes of templates and search regions are 192× 192 pixels and 384× 384 pixels,
corresponding to 22 and 52 times of the target bounding box area. For the GOT-
10k test benchmark [9], which requires training the models with only the training
split of GOT-10k (one-shot setting), we set the total training epoch to 100 with
60k image pairs per epoch, and we decrease the learning rate by a factor of 10
after 80 epochs. The other settings are kept consistent with the models trained
with all datasets.

Classification Loss. We adopt the weighted focal loss [11] for classification.
Specifically, for each ground truth target center p̂ and its corresponding low-
resolution equivalent p̃ = [p̃x, p̃y], the ground truth heatmap can be generated

using a Gaussian kernel as P̂ xy = exp
(
− (x−p̃x)

2+(y−p̃y)
2

2σ2
p

)
, where σ is an object

size-adaptive standard deviation [11]. The Gaussian weighted focal loss can be
formulated as:

Lcls = −
∑
xy

(1− P xy)
αlog(P xy), if P̂ xy = 1

(1− P̂ xy)
β(P xy)

αlog(1− P xy), otherwise
(1)

where α and β are hyper-parameters and we set α = 2 and β = 4 as in [11,22].
Position Embeddings. The length of the position embeddings in the pre-

trained ViT is different from the length of the input template and search region
embeddings. Therefore, the pre-trained positional embeddings are interpolated
(2D bicubic interpolation is adopted) to the sizes of the template and search
region embeddings separately, which are further added to the patch embeddings.

Model Details. In Sec.4.3 of the main paper, we compare our OSTrack
(without the early candidate elimination module) with aligned two-stream track-
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(a) One-stream framework without the early candidate elimination module
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(b) Aligned two-stream framework
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Fig. 1: (a) Our proposed one-stream framework without the early candidate
elimination module, which combines feature extraction and relation modeling
modules. (b) The aligned two-stream tracking framework, which extracts fea-
tures of the template and search region separately and then models the feature
relation with extra Transformer encoder layers.

ers (i.e., STARK-aligned and SwinTrack-aligned), and we further present the de-
tailed structures in this section. The proposed one-stream framework, as shown
in Fig. 1(a), combines feature extraction and relation modeling modules into a
single ViT backbone. The aligned two-stream framework, as shown in Fig. 1(b),
first extracts features of the template and the search region separately with
the same ViT backbone and then models the feature relation with several ex-
tra Transformer encoder layers. As presented in Sec.4.3 of the main paper, this
relation modeling module is instantiated with the encoder structure proposed
in STARK [19] (STARK-aligned) and SwinTrack [14] (SwinTrack-aligned) sep-
arately.



Joint Feature Learning and Relation Modeling for Tracking 3

Table 1: Ablation study on different choices of template tokens used to identify
candidates belonging to background.

Template Token Selection
LaSOT TrackingNet GOT-10k

Success PNorm P Success PNorm P AO SR0.5 SR0.75

No Early Candidate Elimination 68.7 78.1 74.6 82.9 87.5 81.6 73.6 83.0 71.7
All Template Tokens 68.1 77.4 73.5 82.8 87.5 81.6 72.9 82.3 70.1

All Template Tokens within GT Box 68.5 78.1 74.2 83.1 87.8 81.7 73.6 83.4 72.0
Center 4x4 Template Tokens 68.3 77.6 73.9 82.9 87.7 82.0 73.5 83.0 71.5

Center Template Token 69.1 78.7 75.2 83.1 87.8 82.0 73.6 82.8 71.4

2 More Ablation Studies

2.1 The Effect of Different Template Token Choices.

As pointed out in Sec.3.2 of the main paper, the goal of the early candidate elim-
ination module is to identify and discard candidates belonging to background
regions based on the ranking of similarity between the target and each candi-
date. However, the input template also contains background regions, which in-
troduces noisy information when calculating the similarity score. Therefore, dif-
ferent choices of template parts (tokens) used for the similarity calculation may
influence the candidate elimination results and consequently affect the tracking
performance. We compare four different template token choices (the similarity
scores of all chosen template tokens are summed up for the final ranking): 1) all
template tokens; 2) all template tokens within the ground truth target bounding
box; 3) template tokens within a 4x4 region around the center of the template
image; 4) the template token corresponding to the center of the template image.
The result comparison of these template choices is shown in Tab. 1. The results
demonstrate that different template token choices do affect the quality of iden-
tifying background candidates. Since the input template contains background
regions, directly using “All Template Tokens” clearly degrades the tracking per-
formance compared with the baseline (“No Early Candidate Elimination”), i.e.,
0.6% lower in LaSOT AUC. Compared to other choices, using the central tem-
plate token shows better performance, probably because the central token does
not contain any background region and has aggregated the entire target infor-
mation through self-attention.

2.2 Identity Embeddings and Relative Positional Embeddings

We additionally verify the effect of adding identity embeddings and relative po-
sitional embeddings. Specifically, for the identity embeddings, we add learnable
identity embeddings (to indicate a token belonging to the template or search
region as in BERT [6]) to template tokens and search region tokens separately.
For the relative positional embeddings, the same method as in SwinTrack [14]
is adopted. The results are presented in Tab. 2, these two components do not
bring performance gain compared to the original design, thus not adopted in our
model.
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Table 2: The effect of adding additional identity embeddings to the template
and search region embeddings and adding relative positional embeddings to the
OSTrack-256 (without the early candidate elimination module). The results on
LaSOT [7], TrackingNet [16] and GOT10k [9] benchmarks are presented.

LaSOT TrackingNet GOT-10k
Success PNorm P Success PNorm P AO SR0.5 SR0.75

Ours 68.7 78.1 74.6 82.9 87.5 81.6 73.6 83.0 71.7
+ Identity Embeddings 68.0 77.3 73.6 83.3 88.0 82.2 73.6 82.9 71.7
+ Relative Positional Embeddings 68.5 77.8 74.1 83.2 87.8 82.0 73.7 83.3 71.2

Table 3: Add additional relation modeling module to our OSTrack-256 (without
the early candidate elimination module).

LaSOT TrackingNet GOT-10k
Success PNorm P Success PNorm P AO SR0.5 SR0.75

Ours 68.7 78.1 74.6 82.9 87.5 81.6 73.6 83.0 71.7
+ Relation Modeling 68.5 78.0 74.1 82.9 87.4 81.5 72.7 82.2 70.5

2.3 Additional Relation Modeling Module

To investigate whether our one-stream framework does not require an extra
feature relation module, we add an additional transformer-based feature fusion
module proposed in [14], which consists of 4 self-attention layers and 1 cross-
attention layer, to further fusion the extracted template and search region fea-
tures. As the results in Tab. 3 show, adding such a relation modeling module
instead degrades the tracking performance, indicating that the output search re-
gion features of the ViT backbone have been sufficiently fused with the template
features.

2.4 Fewer Relation Modeling Layers

In the implementation of vanilla OSTrack, all encoder layers in ViT-Base (12
layers in total) are used for simultaneous feature extraction and relation model-
ing. In this subsection, we try to decrease the number of layers used for relation
modeling. Specifically, only the last n encoder layers are used for simultaneous
feature extraction and relation modeling, and the first 12 − n layers are only
used for the template and search region feature extraction. n is set to be 6 and
3 separately and the results are presented in Tab. 4. The results show that using
fewer encoder layers for simultaneous feature extraction and relation modeling
will degrade the tracking performance, showing the necessity of sufficient feature
fusion.

2.5 Different Token Drop Rate

We also try to apply a different keeping ratio ρ for the early candidate elimination
module. As the results in Tab. 5 show, using ρ < 0.7 leads to performance drop
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Table 4: Ablation studies on the number of encoder layers used for relation
modeling.

LaSOT TrackingNet GOT-10k
Success PNorm P Success PNorm P AO SR0.5 SR0.75

12 (Ours) 68.7 78.1 74.6 82.9 87.5 81.6 73.6 83.0 71.7
6 67.9 77.3 73.6 83.0 87.5 81.5 73.3 82.9 71.4
3 67.8 77.0 73.5 82.7 87.4 80.7 72.8 82.5 70.7

Table 5: Different keeping ratio ρ used in the early candidate elimination module
(ρ = 1 means the early candidate elimination module is not adopted).

Keeping
Ratio

LaSOT TrackingNet GOT-10k
MACs (G)

Success PNorm P Success PNorm P AO SR0.5 SR0.75

1 68.7 78.1 74.6 82.9 87.5 81.6 73.6 83.0 71.7 29.0

0.9 68.7 78.2 74.6 83.2 87.8 82.0 74.1 83.6 71.8 26.2
0.8 68.9 78.4 74.9 83.3 88.0 82.3 73.4 82.7 71.4 23.6
0.7 69.1 78.7 75.2 83.1 87.8 82.0 73.6 82.8 71.4 21.5
0.6 68.4 77.9 74.3 83.1 87.6 81.8 73.5 82.9 71.7 19.6
0.5 67.8 77.2 73.4 82.7 87.4 81.3 71.8 81.3 68.4 18.0

on the LaSOT [7] tracking benchmark since small ρ may cause a significant
information loss. However, the reduction in computational cost that comes with
large ρ is limited. Setting ρ = 0.7 shows a decent decrease in computational cost
with a slight improvement in tracking performance. Therefore, we use ρ = 0.7
in our experiments.

3 Results on VOT2020

VOT2020 [10] is a challenging short-term tracking benchmark that is evaluated
by target segmentation results. To evaluate OSTrack on VOT2020, we use Al-
phaRefine [20] to generate segmentation masks, and the results are shown in
Tab. 6. Since the wide existence of distractors in VOT2020, updating the tem-
plate during the tracking process becomes a common practice to avoid tracking
drift, which can bring significant performance gain (e.g ., STARK-ST50 cites-
tark raises the EAO from 0.462 to 0.505 by simply adding a dynamic template).
OSTrack-256 obtains an EAO of 0.518, which already outperforms the STARK-
ST50 with an online template updating mechanism. This demonstrates the great
potential of OSTrack which serves as a neat and strong baseline model.

4 Results on ITB

ITB [13] benchmark is a newly collected benchmark with 9 representative sce-
narios and 180 diverse videos, which contains more informative tracking se-
quences. Tab. 7 shows the results of OSTrack compared with other SOTA tackers.
Our OSTrack-384 achieves 64.8% in mIoU, surpassing the previous best tracker
STARK [19] by a large margin (7.2%).
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Table 6: Comparison on VOT2020 benchmark. The left part of the trackers adopt
an online template update mechanism, while the right part of the trackers do
not. The best two results are shown in red and blue fonts.

Ocean
[21]

ATOM
[4]

D3S
[15]

AlphaRef
[20]

STARK-
ST50 [19]

STARK -
ST101 [19]

SiamMask
[18]

STARK-
S50 [19]

OSTrack-256 OSTrack-384

EAO (↑) 0.43 0.271 0.439 0.482 0.505 0.497 0.321 0.462 0.518 0.524
Accuracy (↑) 0.693 0.462 0.699 0.754 0.759 0.763 0.624 0.761 0.762 0.767
Robustness (↑) 0.754 0.734 0.769 0.777 0.817 0.789 0.648 0.749 0.814 0.816

Table 7: Comparison with state-of-the-arts on ITB [13] benchmark. mIoU(%)
scores are reported. The best two results are shown in red and blue fonts.

SiamRPN++
[12]

Ocean
[21]

GAT
[8]

ATOM
[4]

DiMP
[1]

PrDiMP
[5]

KYS
[2]

TrDiMP
[17]

TransT
[3]

STARK
[19]

OSTrack
-246

OSTrack
-384

mIoU 44.1 47.7 44.9 47.2 53.7 54.4 52.0 56.1 54.7 57.6 61.2 64.8

5 More Visualization

We first provide more visualization results for attention weights of the search
region corresponding to the center part of the template (which can be seen as
the target) in Fig. 2. The results show that the model attends to the foreground
objects at an early stage (see “Layer 4” in Fig. 2) and finally shows great dis-
criminative power between the target and distractors (see “Layer 12” in Fig. 2).
These phenomenons demonstrate that the proposed OSTrack can extract target-
oriented features with strong target-distractor discriminability.

In Fig. 3, more visualization results of the early candidate elimination module
are presented. The results validate that the proposed method can effectively
identify and discard background regions under various target categories and
challenge scenarios (e.g ., target deformation, occlusion, motion blur, etc.).
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Input Layer 1 Layer 4 Layer 7 Layer 10 Layer 12

Fig. 2: Extended visualization for attention weights of the search region corre-
sponding to the center part of template after different ViT layers, the green
rectangles indicate target objects. The results show that our one-stream frame-
work is able to distinguish between targets and distractors and progressively
focus on targets.
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Input Stage 1 Stage 2 Stage 3Input Stage 1 Stage 2 Stage 3 Input Stage 1 Stage 2 Stage 3Input Stage 1 Stage 2 Stage 3

Fig. 3: Extended visualization results of the progressive candidate elimination
process. The main body of “Input” is the search region image, and the upper
left corner shows the corresponding template image. The Green rectangles indi-
cate target objects and the masked regions represent the discarded tokens. Our
early candidate elimination module can effectively dealing with different track-
ing target and scenarios.
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